Test Report issued under the responsibility of:

TEST REPORT

Engineering Recommendation EN 50549-1:2019 Requirements for the connection of generation equipment in parallel with public distribution networks

Tested by (name + signature): Chuanhui Xie

Sleifsui

Testing Laboratory Intertek Testing Services Shanghai.

Address....... Building No.86, 1198 Qinzhou Road (North), Shanghai 200233,

China.

Testing location / address...... Same as above

Applicant's name Afore New Energy Technology (Shanghai)Co., Ltd.

Address....... Build No.7, 333 Wanfang Road, Minhang District, Shanghai. China.

201112

Test specification:

equipment in parallel with public distribution networks.

Test Report Form/blank test report

Master TRF...... 2019-11

This publication may be reproduced in whole or in part for non-commercial purpose as long as Intertek is acknowledged as copyright owner and source of the material. Intertek takes no responsibility and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

Page 2 of 100

Report No. 220900591SHA-002

Test item description AC coupled inverter

Trade Mark Afore

Manufacturer: Same as applicant

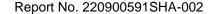
AF3.6K-SL-0, AF4K-SL-0, AF4.6K-SL-0, AF5K-SL-0, AF5.5K-SL-0,

AF6K-SL-0

Rating..... See below Specifications table

	Specifications table					
Model	AF1K-SL-0	AF1.5K-SL-0	AF2K-SL-0	AF2.5K-SL-0		
Battery (charge/discharge)						
Battery type	Li-ion / lead acid etc.					
Battery Nominal Voltage (V)		51	.2			
Battery Voltage Range (V)		40-	-60			
Max. Charge/Discharge Current (A)	25	40	50	63		
Max. Charge/Discharge Power (W)	1000	1500	2000	2500		
AC Grid (input and output)						
Nominal Voltage (V)		L/N/PE.	230Vac			
Nominal Frequency (Hz)	50					
Max. con Current (A)	5	7	10	12		
Nominal Power (W)	1000	1500	2000	2500		
Max. Power (W)	1000	1500	2000	2500		
Max. apparent Power (VA)	1000	1500	2000	2500		
Power Factor		1(-0.8~+0.8	adjustable)			
AC Load output						
Nominal Output Voltage (V)		L/N/PE.	230Vac			
Nominal Frequency (Hz)		5	0			
Max. cont. current (A)	5	7	10	12		
Nominal Output Power(W)	1000	1500	2000	2500		
Max. Output Power (W)	1000	1500	2000	2500		
Max. apparent Power (VA)	1000	1500	2000	2500		
Power Factor		1				
Others						
Ingress protection (IP)	IP65					
Temperature (°C)	-25°C to +60°C (Derating 45°C)					
Inverter Isolation	Non-isolated					
Software version	V06					

	Specification	ne table		
			A F 414 OL O	A E 4 O 4 O 4 O
Model	AF3K-SL-0	AF3.6K-SL-0	AF4K-SL-0	AF4.6K-SL-0
Battery (charge/discharge)				
Battery type		Li-ion / lea		
Battery Nominal Voltage (V)			.2	
Battery Voltage Range (V)		40-		_
Max. Charge/Discharge Current (A)	80	80	80	80
Max. Charge/Discharge Power (W)	3000	3600	4000	4600
AC Grid (input and output)				
Nominal Voltage (V)	L/N/PE. 230Vac			
Nominal Frequency (Hz)		5	0	
Max. con Current (A)	14	17	19	22
Nominal Power (W)	3000	3600	4000	4600
Max. Power (W)	3000	3600	4000	4600
Max. apparent Power (VA)	3000	3600	4000	4600
Power Factor		1(-0.8~+0.8	adjustable)	
AC Load output				
Nominal Output Voltage (V)		L/N/PE.	230Vac	
Nominal Frequency (Hz)		5	0	
Max. cont. current (A)	14	17	19	22
Nominal Output Power(W)	3000	3600	4000	4600
Max. Output Power (W)	3000	3600	4000	4600
Max. apparent Power (VA)	3000	3600	4000	4600
Power Factor		1		
Others				
Ingress protection (IP)	IP65			
Temperature (°C)	-25°C to +60°C (Derating 45°C)			
Inverter Isolation	Non-isolated			
Software version		V(06	



Specifications table				
Model	AF5K-SL-0	AF5.5K-SL-0	AF6K-SL-0	
Battery (charge/discharge)				
Battery type	Li-ion / lead acid etc.			
Battery Nominal Voltage (V)		51	.2	
Battery Voltage Range (V)		40-	60	
Max. Charge/Discharge Current (A)	100	120	120	
Max. Charge/Discharge Power (W)	5000	5500	6000	
AC Grid (input and output)				
Nominal Voltage (V)		L/N/PE.	230Vac	
Nominal Frequency (Hz)		5	0	
Max. con Current (A)	23	26	28	
Nominal Power (W)	5000	5500	6000	
Max. Power (W)	5000	5500	6000	
Max. apparent Power (VA)	5000	5500	6000	
Power Factor		1(-0.8~+0.8	adjustable)	
AC Load output				
Nominal Output Voltage (V)		L/N/PE.	230Vac	
Nominal Frequency (Hz)		50	0	
Max. cont. current (A)	23	26	28	
Nominal Output Power(W)	5000	5500	6000	
Max. Output Power (W)	5000	5500	6000	
Max. apparent Power (VA)	5000	5500	6000	
Power Factor		1		
Others				
Ingress protection (IP)		IP		
Temperature (°C)	-25°C to +60°C (Derating 45°C)			
Inverter Isolation	Non-isolated Non-isolated			
Software version		V06		

Summary of testing:

ests perform	ned (name of test and test clause):	Testing location:
EN 50549-1	Test Description	Building No.86, 1198 Qinzho
4.4.2	Operating frequency range	Road (North), Shanghai
4.4.3	Minimal requirements for active power delivery at underfrequency	200233, China
4.4.4	Continuous voltage operation range	
4.5.2	Rate of change of frequency (ROCOF)	
4.5.3	UVRT	
4.5.4	OVRT	
4.6.1	Power response to over frequency	
4.6.2	Power response to underfrequency	
4.7.2.2	Q Capabilites (Power Factor) & Q(U) Capabilities	
4.7.2.3.3	Q Control. Voltage related control mode	
4.7.2.3.4	Q Control Power related control modes	
4.7.3	Voltage control by active power	
4.7.4	Zero current mode	
4.9.3	Interface protection	
4.9.4.	Islanding	
4.10.2	Reconnection after tripping	
4.10.3	Starting to generate electrical power	
4.11	Active power reduction by setpoint and ceasing active power (Logic interface)	
4.13	Single fault tolerance of interface protection and interface switch	
Remark:		
Other than spector other mode	ecial notice, the model AF6k-SL-0 is type tested and valid els.	

Test item particulars ::

Temperature range :: -25°C ~60°C (Derating 45 °C)

IP protection class :: IP 65

Possible test case verdicts:
- test case does not apply to the test object :: N/A
- test object does meet the requirement :: P(Pass)
- test object does not meet the requirement :: F(Fail)

Testing ::: Date of receipt of test item :: 2022-09-08

Date (s) of performance of tests :: 2022-09-09 to 2022-09-20

General remarks:

The test results presented in this report are only to the object (single power inverter unit) tested and base on Low Voltage connected on small power station.

Installer and relevant persons shall comply with EN 50549-1:2019, Local code and Grid Code in EN 50549-1:2019.

This report shall not be reproduced, except in full, without the written approval of the Issuing testing laboratory.

Throughout this report a point is used as the decimal separator.

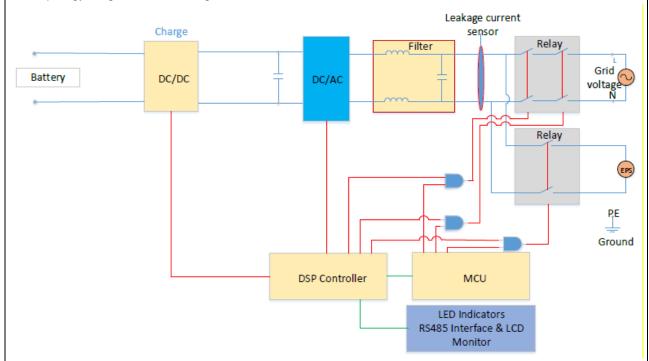
Determination of the test conclusion is based on IEC Guide 115 in consideration of measurement uncertainty.

Determination of the test result includes consideration of measurement uncertainty from the test equipment and methods.

The test results presented in this report relate only to the item tested. The results indicate that the specimen partially complies with standard" EN 50549-1:2019". See general product information next for details information.

[&]quot;(see Enclosure #)" refers to additional information appended to the report.

[&]quot;(see appended table)" refers to a table appended to the report.


General product information:

The testing item is an AC coupled inverter for indoor or outdoor installation.

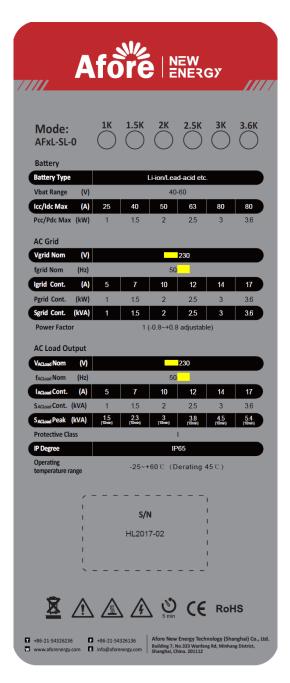
The relays are designed to redundant structure that controlled by separately.

The master controller and slave controller are used together to control relay open or close, if the single fault on one controller, the other controller can be capable to open the relay, so that still providing safety means.

The topology diagram as following:

Model differences:

All models are identical with hardware version and software version, the output power is derating by software.


Factory information:

Afore New Energy Technology (Shanghai) Co., Ltd.

Build No.7, 333 Wanfang Road, Minhang District, Shanghai. China. 201112

Copy of marking plate

Note:

- 1. The above markings are the minimum requirements required by the safety standard. For the final production samples, the additional markings which do not give rise to misunderstanding may be added.
- 2. Marking plate is attached on the side surface of enclosure and visible after installation
- 3. Other marking plate are identical to above, except the model's name and ratings
- 4. The information covered by on marking plate was irrelevant to this report.
- 5. The model name: AFx-SL-0, x means 1K, 1.5K, 2K, 2.5K, 3K, 3.6K, 4K, 4.6K, 5K, 5.5K, 6K

	EN 50549-1:2019		
Clause	Requirement - Test	Result - Remark	Verdict
4	Requirements on generating plants		Р
4.1	General	This report is only evaluated and tested for generating unit; The generating plant incorporated with the generating unit shall further consider this clause and sub-clause.	N/A
4.2	Connection scheme	Shall consider in final PGS	N/A
4.3	Choice of switchgear		Р
4.3.1	General Switches shall be chosen based on the characteristics of the power system in which they are intended to be installed. For this purpose, the short circuit current at the installation point shall be assessed, taking into account, inter alia, the short circuit current contribution of the generating plant.		Р
4.3.2	Interface switch Switches shall be power relays, contactors or mechanical circuit breakers each having a breaking and making capacity corresponding to the rated current of the generating plant and corresponding to the short circuit contribution of the generating plant. The short- time withstand current of the switching devices shall be coordinated with rated short circuit power at the point of connection. In case of loss of auxiliary supply power to the switchgear, a secure disconnection of the switch is required immediately. Where means of isolation (according to HD 60364-5-551) is not required to be accessible to the DSO at all times, automatic disconnection with single fault tolerance according to 4.13 shall be provided. The function of the interface switch might be combined with either the main switch or the generating unit switch in a single switching device. In case of a combination, the single switching device shall be compliant to the requirements of both, the interface switch and the combined main switch or generating unit switch. As a consequence, at least two switches in series shall be present between any generating unit and the POC.	The interface switch is constructed of redundancy, made up of two series relays and power and control separately.	Р
4.4	Normal operating range	1	Р
4.4.1	General Generating plants when generating power shall have the capability to operate in the operating ranges specified below regardless of the topology and the settings of the interface protection.		Р

Clause	Requirement - Test	Result - Remark	Verdict
4.4.2	Operating frequency range The generating plant shall be capable of operating continuously when the frequency at the point of connection stays within the range of 49 Hz to 51 Hz. In the frequency range from 47 Hz to 52 Hz the generating plant should be capable of operating until the interface protection trips. Therefore, the generating plant shall at least be capable of operating in the frequency ranges, for the duration and for the minimum requirement as indicated in Table 1. Respecting the legal framework, it is possible that for some synchronous areas more stringent time periods and/or frequency ranges will be required by the DSO and the responsible party. Nevertheless, they are expected to be within the boundaries of the stringent requirement as indicated in Table 1 unless producer, DSO, TSO and responsible party agree on wider frequency ranges and	See appended table 4.4.2	Р
4.4.3	Minimal requirement for active power delivery at underfrequency A generating plant shall be resilient to the reduction of frequency at the point of connection while reducing the maximum active power as little as possible. The admissible active power reduction due to underfrequency is limited by the full line in Figure 5 and is characterized by a maximum allowed reduction rate of 10 % of Pmax per 1 Hz for frequencies below 49,5 Hz. It is possible that a more stringent power reduction characteristic is required by the responsible party. Nevertheless this requirement is expected to be limited to an admissible active power reduction represented by the dotted line in Figure 5 which is characterised by a reduction rate of 2 % of the maximum power Pmax per 1 Hz for frequencies below 49 Hz. If any technologies intrinsic design or ambient conditions have influence on the power reduction behaviour of the system, the manufacturer shall specify at which ambient conditions the requirements can be fulfilled and eventual limitations. The information can be provided in the format of a graph showing the intrinsic behaviour of the generating unit for example at different ambient conditions. The power reduction and the ambient conditions shall comply with the specification given by the responsible party. If the generating unit does not meet the power reduction at the specified ambient conditions, the producer and the responsible party	See appended table 4.4.3	P

	EN 50549-1:2019		
Clause	Requirement - Test	Result - Remark	Verdict
4.4.4	Continuous operating voltage range When generating power, the generating plant shall be capable of operating continuously when the voltage at the point of connection stays within the range of 85 % Un to 110 % Un. Beyond these values the under and over voltage ride through immunity limits as specified in clause 4.5.3 and 4.5.4 shall apply. In case of voltages below Un, it is allowed to reduce the apparent power to maintain the current limits of the generating plant. The reduction shall be as small as technically feasible. For this requirement all phase to phase voltages and in case a neutral is connected, additionally all phase to neutral voltages shall be evaluated.	See appended table 4.4.4	Р
4.5	Immunity to disturbances		Р
4.5.1	General In general, generating plants should contribute to overall power system stability by providing immunity towards dynamic voltage changes unless safety standards require a disconnection. The following clauses describe the required immunity for generating plants taking into account the connection technology of the generating modules. The following withstand capabilities shall be provided regardless of the settings of the interface protection.		Р
4.5.2	Rate of change of frequency (ROCOF) immunity ROCOF immunity of a power generating plant means that the generating modules in this plant stay connected with the distribution network and are able to operate when the frequency on the distribution network changes with a specified ROCOF. The generating units and all elements in the generating plant that might cause their disconnection or impact their behaviour shall have this same level of immunity. The generating modules in a generating plant shall have ROCOF immunity for a ROCOF equal or exceeding the value specified by the responsible party. If no ROCOF immunity value is specified, the following ROCOF immunity shall apply, making distinction between generating technologies: Non-synchronous generating technology: at least 2 Hz/s Synchronous generating technology: at least 1 Hz/s	See appended table 4.5.2	Р
4.5.3	Under-voltage ride through (UVRT)		Р
4.5.3.1	General Generating modules classified as type B modules according to COMMISSION REGULATION 2016/631 shall comply with the requirements of 4.5.3.2 and 4.5.3.3. Generating modules classified as type A and smaller according to COMMISSION REGULATION 2016/631 should comply with these requirements. The actual behaviour of type A modules and smaller shall be specified in the connection agreement. The requirements apply to all kinds of faults (1ph, 2ph and 3ph).		Р

	EN 50549-1:2019		
Clause	Requirement - Test	Result - Remark	Verdict
4.5.3.2	Generating plant with non-synchronous generating technology Generating modules shall be capable of remaining connected to the distribution network as long as the voltage at the point of connection remains above the voltage-time curve of Figure 6. The voltage is relative to Un. The smallest phase to neutral voltage, or if no neutral is present, the smallest phase to phase voltage shall be evaluated. The responsible party may define a different UVRT characteristic. Nevertheless, this requirement is expected to be limited to the most stringent curve as indicated in Figure 6. This means that the whole generating module has to comply with the UVRT requirement. This includes all elements in a generating plant: the generating units and all elements that might cause their disconnection. For the generating unit, this requirement is considered to be fulfilled if it stays connected to the distribution grid as long as the voltage at its terminals remains above the defined voltage-time diagram. After the voltage returns to continuous operating voltage range, 90 % of pre-fault power or available power whichever is the smallest shall be resumed as fast as possible, but at the latest within 1 s unless the DSO and the responsible party requires another value.	See appended table 4.5.3	Р
4.5.3.3	Generating plant with synchronous generating technology		N/A
4.5.4	Over-voltage ride through (OVRT) Generating modules, except for micro-generating plants, shall be capable of staying connected to the distribution network as long as the voltage at the point of connection remains below the voltage-time curve of Figure 8. The highest phase to neutral voltage or if no neutral is present the highest phase to phase voltage shall be evaluated. This means that not only the generating units shall comply with this OVRT requirement but also all elements in a generating plant that might cause its disconnection.	See appended table 4.5.4	Р
4.6	Active response to frequency deviation		Р

	EN 50549-1:2019					
Clause	Requirement - Test	Result - Remark	Verdict			
4.6.1	Power response to overfrequency Generating plants shall be capable of activating active power response to overfrequency at a programmable frequency threshold f1 at least between and including 50,2 Hz and 52 Hz with a programmable droop in a range of at least s=2 % to s=12 %. The droop reference is Pref. Unless defined differently by the responsible party: • Pref=Pmax, in the case of synchronous generating technology and electrical energy storage systems. • Pref=PM, the actual AC output power at the instant when the frequency reaches the threshold f1, in the case of all other non-synchronous generating technology. The power value calculated according to the droop is a maximum power limit. If e.g. the available primary power decreases during a high frequency period below the power defined by the droop function, lower power values are permitted. The generating plant shall be capable of activating active power response to overfrequency as fast as technically feasible with an intrinsic dead time that shall be as short as possible with a maximum of 2 s and with a step response time of maximum 30 s, unless another value is defined by the relevant party. An intentional delay shall be programmable to adjust the dead time to a value between the intrinsic dead time and 2 s. After activation, the active power frequency response shall use the actual frequency at any time, reacting to any frequency increase or decrease according to the programmed droop with an accuracy of ± 10 % of the nominal power (see Figure 9). The resolution of the frequency measurement shall be ± 10 mHz or less. The accuracy is evaluated with a 1 min average value. At POC, loads if present in the producer's network might interfere with the response of the generating plant. The effect of loads is not considered for the evaluation of the accuracy, only the behaviour of the generating plant is relevant.	See appended table 4.6.1	P			
	Generating plants reaching their minimum regulating level shall, in the event of further frequency increase, maintain this power level constant unless the DSO and the responsible party requires to disconnect the complete plant or if the plant consists of multiple units by disconnecting individual units. The active power frequency response is only deactivated if the frequency falls below the frequency threshold f1. If required by the DSO and the responsible party an additional deactivation threshold frequency fstop shall be programmable in the range of at least 50 Hz to f1. If fstop is configured to a frequency below f1 there shall be no response according to the droop in case of a frequency decrease (see Figure 10). The output power is kept constant until the frequency falls below fstop for a configurable time tstop.		Р			

Claves =	EN 50549-1:2019	Dooult Daire and	\/!!
Clause	Requirement - Test If at the time of deactivation of the active power frequency	Result - Remark	Verdic
	response the momentary active power PM is below the available active power PA, the active power increase of the generating plant shall not exceed the gradient defined in 4.10.2. Settings for the threshold frequency f ₁ , the droop and the intentional delay are provided by the DSO and the responsible party. If no settings are provided, the default settings in Table 2 should be applied.		Р
	The enabling and disabling of the function and its settings shall be field adjustable and means shall be provided to protect these from unpermitted interference (e.g. password or seal) if required by the DSO and the responsible party.		Р
	Alternatively for the droop function described above, the following procedure is allowed for generating modules if permitted by the DSO and the responsible party: • the generating units shall disconnect at randomized frequencies, ideally uniformly distributed between the frequency threshold f1 and 52 Hz; • in case the frequency decreases again, the generating unit shall start its reconnection procedure once the frequency falls below the specific frequency that initiated the disconnection; for this procedure, the connection conditions described in 4.10 do not apply; • the randomization shall either be at unit level by changing the threshold over time, or on plant level by choosing different values for each unit within a plant, or on distribution system level if the DSO specifies a specific threshold for each plant or unit connected to its distribution system. EES units that are in charging mode at the time the		Р
	frequency passes the threshold f ₁ shall not reduce the charging power below P _M until frequency returns below f ₁ . Storage units should increase the charging power according to the configured droop. In case the maximum charging capacity is reached or to prevent any other risk of injury or damage of equipment, a reduction of charging power is permitted.		Pass
3.2	Power response to underfrequency EES units shall be capable of activating active power response to underfrequency. Other generating units/plants should be capable of activating active power response to underfrequency. If active power to underfrequency is provided by a generating plant/unit, the function shall comply with the requirements below. Active power response to underfrequency shall be provided when all of the following conditions are met: • when generating, the generating unit is operating at active power below its maximum active power Pmax; • when generating, the generating unit is operating at active power below the available active power PA; • the voltages at the point of connection of the generating plant are within the continuous operating voltage range; • when generating, the generating unit is operating with currents lower than its current limit. In the case of EES units, active power frequency response to underfrequency shall be provided in charging and generating	See appended table 4.6.2	Р

01-	EN 50549-1:2019	D 11 D	.,
Clause	Requirement - Test	Result - Remark	Verdic
	The active power response to underfrequency shall be		
	delivered at a programmable frequency threshold f ₁ at least		
	between and including 49,8 Hz and 46,0 Hz with a		
	programmable droop in a range of at least 2 % to 12 %. The		
	droop reference P _{ref} is P _{max} . If the available primary power or a local set value increases during an underfrequency period		
	above the power defined by the droop function, higher power		
	values are permitted. The power value calculated according		
	to the droop is therefore a minimum limit.		
	The generating unit shall be capable of activating active		Р
	power response to underfrequency as fast as technically		
	feasible with an intrinsic dead time that shall be as short as		
	possible with a maximum of 2 s and with a step response		
	time of maximum 30 s unless another value is defined by the		
	relevant party.		
	An intentional initial delay shall be programmable to adjust		
	the dead time to a value between the intrinsic dead time and		
	2 s.		
	After activation, the active power frequency response shall		
	use the actual frequency at any time, reacting to any		
	frequency increase or decrease according to the programmed droop with an accuracy of ± 10 % of the		
	nominal power. The accuracy is evaluated with a 1 min		
	average value. The resolution of the frequency measurement		
	shall be ± 10 mHz or less. At POC loads, if present in the		Р
	producer's		
	network, might interfere with the response of the generating		
	plant. The effect of loads is not considered for the evaluation		
	of the accuracy, only the behaviour of the generating plant is		
	relevant.		
	Generating modules reaching any of the conditions above		
	during the provision of active power frequency response		
	shall, in the event of further frequency decrease, maintain		Р
	this power level constant.		
	The active power frequency response is only deactivated if		
	the frequency increases above the frequency threshold f1. Settings for the threshold frequency f ₁ , the droop and the		
	intentional delay are defined by the DSO and the responsible		
	party, if no settings are provided, the function shall be		Р
	disabled.		
	The activation and deactivation of the function and its		
	settings shall be field adjustable and means shall be provided		
	to protect these from unpermitted interference (e.g. password		Р
	or seal) if required by the DSO and the responsible party.		
7	Power response to voltage changes		Р
	General		
	When the contribution to voltage support is required by the		
7.1	DSO and the responsible party, the generating plant shall be		Р
	designed to have the capability of managing reactive and/or		
	active power generation according to the requirements of this clause.		
	ciause.		Р

	EN 50549-1:2019		,
Clause	Requirement - Test	Result - Remark	Verdict
4.7.2.1	General Generating plants shall not lead to voltage changes out of acceptable limits. These limits should be defined by national regulation. Generating units and plants shall be able to contribute to meet this requirement during normal network operation. Throughout the continuous operating frequency (see 4.4.2) and voltage (see 4.4.4) range, the generating plant shall be capable to deliver the requirements stipulated below. Outside these ranges, the generating plant shall follow the requirements as good as technically feasible although there is no specified accuracy required.		Р
4.7.2.2	Capabilities Unless specified differently below, for specific generating technologies, generating plants shall be able to operate with active factors as defined by the DSO and the responsible party from active factor = 0,90underexcited to active factor=0,90overexcited The reactive power capability shall be evaluated at the terminals of the/each generating unit		Р
	CHP generating units with a capacity \leq 150 kVA shall be able to operate with active factors as defined by the DSO from cos $\phi = 0.95$ _{underexcited} to $\cos \phi = 0.95$ _{overexcited} Generating units with an induction generator coupled directly to the grid and used in generating plants above micro generating level, shall be able to operate with active factors as defined by the DSO from $\cos \phi = 0.95$ _{underexcited} to $\cos \phi = 1$ at the terminals of the unit. Deviating from 4.7.2.3 only the $\cos \phi$ set point mode is required. Deviating from the accuracy requirements below, the accuracy is only required at active power PD.		N/A
	Generating units with an induction generator coupled directly to the grid and used in micro generating plants shall operate with an active factor above 0,95 at the terminals of the generating unit. A controlled voltage support by reactive power is not required from this technology.		N/A
	Generating units with linear generators, coupled directly and synchronously to the grid shall operate with an active factor above 0,95 at the terminals of the generating unit, and therefore a controlled voltage support by reactive power is not required from this technology.		N/A
	In case of different generating technologies with different requirements in one generating plant, each unit shall provide voltage support by reactive power as required for its specific technology. A compensation of one technology to reach the general plant requirement is not expected. The DSO and the responsible party may relax the above requirements. This relaxation might be general or specific for a certain generating plant or generating technology.		N/A

	EN 50549-1:2019		
Clause	Requirement - Test	Result - Remark	Verdict
	All involved parties can expect to have access to information documenting the actual choices regarding active power capabilities relative to reactive power requirements and related to the power rating in the operating voltage range (see further in this clause). A P-Q Diagram shall be included in the product documentation of a generating unit. When operating above the apparent power threshold Smin equal to 10 % of the maximum apparent power Smax or the minimum regulating level of the generating plant, whichever is the higher value, the reactive power capability shall be provided with an accuracy of ± 2 % Smax. Up to this apparent power threshold Smin, deviations above 2 % are permissible; nevertheless the accuracy shall always be as good as technically feasible and the exchange of uncontrolled reactive power in this low-power operation mode shall not exceed 10 % of the maximum apparent power Smax. At POC loads, if present in the producer's network might interfere with the response of the generating plant. The effect of loads is not considered for the evaluation of the accuracy, only the behaviour of the generating plant is relevant. For generating units with a reactive power capability according Figure 12 the reactive power capability at active power P _D shall be at least according Figure 13. For generating units with a reduced reactive power capability		Р
4.7.2.3	power capability. Control modes		P
4.7.2.3.1	Where required, the form of the contribution to voltage control shall be specified by the DSO. The control shall refer to the terminals of the generating units The generating plant/unit shall be capable of operating in the control modes specified below within the limits specified in 4.7.2.2. The control modes are exclusive; only one mode may be active at a time. • Q setpoint mode • Q (U) • Cos φ setpoint mode • Cos φ (P) For mass market products, it is recommended to implement all control modes. In case of site specific generating plant design, only the control modes required by the DSO need to be implemented. The configuration, activation and deactivation of the control modes shall be field adjustable. For field adjustable configurations and activation of the active control mode, means shall be provided to protect the settings from unpermitted interference (e.g. password or seal) if required by the DSO. Which control modes are available in a product and how they are configured shall be stated in the product documentation.		Р
4.7.2.3.2	Setpoint control modes Q setpoint mode and cos φ setpoint mode control the reactive power output and the cos φ of the output respectively, according to a set point set in the control of the generating plant/unit. In the case of change of the set point local or by remote control the settling time for the new set point shall be less than one minute.	See appended table 4.7.2	Р

	EN 50549-1:2019			
Clause	Requirement - Test	Result - Remark	Verdict	
4.7.2.3.3	Voltage related control mode The voltage related control mode Q (U) controls the reactive power output as a function of the voltage. There is no preferred state of the art for evaluating the voltage. Therefore it is the responsibility of the generating plant designer to choose a method. One of the following methods should be used: • the positive sequence component of the fundamental. • the average of the voltages measured independently for each phase to neutral or phase to phase. • phase independently the voltage of every phase to	Method 2 used	p	
	determine the reactive power for every phase.			
	For voltage related control modes, a characteristic with a minimum and maximum value and three connected lines according to Figure 16 shall be configurable. In addition to the characteristic, further parameters shall be configurable: • The dynamics of the control shall correspond with a first order filter having a time constant that is configurable in the range of 3 s to 60 s.	See appended table 4.7.2	Р	
	To limit the reactive power at low active power two methods shall be configurable: • a minimal cos φ shall be configurable in the range of 0-0,95; • two active power levels shall be configurable both at least in the range of 0 % to 100 % of P _D . The lock-in value turns the Q(U) mode on, the lock-out value turns Q(U) off. If lock-in is larger than lock-out a hysteresis is given. See also Figure 14. The static accuracy shall be in accordance with 4.7.2.2. The dynamic accuracy shall be in accordance with Figure 15 with a maximum tolerance of +/- 5% of P _D plus a time delay of up to 3 seconds deviating from an ideal first order filter response.		Р	
4.7.2.3.4	Power related control mode The power related control mode $\cos \varphi$ (P) controls the $\cos \varphi$ of the output as a function of the active power output. For power related control modes, a characteristic with a minimum and maximum value and three connected lines shall be configurable in accordance with Figure 16. Resulting from a change in active power output a new $\cos \varphi$ set point is defined according to the set characteristic. The response to a new $\cos \varphi$ set value shall be as fast as technically feasible to allow the change in reactive power to be in synchrony with the change in active power. The new reactive power set value shall be reached at the latest within 10 s after the end value of the active power is reached. The static accuracy of each $\cos \varphi$ set point shall be according to 4.7.2.2.	See appended table 4.7.2	Р	

EN 50549-1:2019			
Clause	Requirement - Test	Result - Remark	Verdict
4.7.3	Voltage related active power reduction In order to avoid disconnection due to overvoltage protection (see 4.9.2.3 and 4.9.2.4), generating plants/units are allowed to reduce active power output as a function of this rising voltage. The final implemented logic can be chosen by the manufacturer. Nevertheless, this logic shall not cause steps or oscillations in the output power. The power reduction caused by such a function may not be faster than an equivalent of a time constant tau = 3 s (= 33%/s at a 100% change). The enabling and disabling of the function shall be field adjustable and means have to be provided to protect the setting from unpermitted interference (e.g. password or seal) if required by the DSO.	See appended table 4.7.3	Р
4.7.4	Short circuit current requirements on generating plants		Р
4.7.4.1	General The following clauses describe the required short circuit current contribution for generating plants taking into account the connection technology of the generating modules. Generating modules classified as type B modules according to COMMISSION REGULATION 2016/631 shall comply with the requirements of 4.7.4.2 and 4.7.4.3. Generating modules classified as type A according to COMMISSION REGULATION 2016/631 should comply with these requirements. The actual behaviour of type A modules shall be specified in the connection agreement.		Р

	EN 50549-1:2019		
Clause	Requirement - Test	Result - Remark	Verdict
4.7.4.2	Generating plant with non-synchronous generating techn	ology	Р
4.7.4.2.1	Voltage support during faults and voltage steps In general no voltage support during faults and voltage steps is required from generating plants connected in LV distribution networks as the additional reactive current is expected to interfere with grid protection equipment. If the responsible party requires voltage support during faults and voltage steps for generating plants of type B connected to LV distribution grids, the clause 4.7.4 of EN 50549-2 applies.	Only EN 50549-1 applies, if required by the responsible party for additional reactive current, the EN 50549-2 shall be applied	Р
4.7.4.2.2	Zero current mode for converter connected generating technology If UVRT capability (see 4.5.3) is provided additional to the requirements of 4.5, generating units connected to the grid by a converter shall have the capability to reduce their current as fast as technically feasible down to or below 10 % of the rated current when the voltage is outside of a static voltage range. Generating units based on a doubly fed induction machine can only reduce the positive sequence current below 10 % of the rated current. Negative sequence current shall be tolerated during unbalanced faults. In case this current reduction is not sufficient, the DSO should choose suitable interface protection settings. The static voltage range shall be adjustable from 20 % to 100 % of Un for the undervoltage boundary and from 100 % to 130 % of Un for the overvoltage boundary. The default setting shall be 50% of Un for the undervoltage boundary and 120% of Un for the overvoltage boundary. Each phase to neutral voltage or if no neutral is present each phase to phase voltage shall be evaluated. At voltage re-entry into the voltage range, 90% of pre-fault power or available power, whichever is the smallest, shall be resumed as fast as possible, but at the latest according to 4.5.3 and 4.5.4. All described settings are defined by the DSO and the responsible party. If no settings are provided, the function shall be disabled. The enabling and disabling and the settings shall be field adjustable and means have to be provided to protect these from unpermitted interference (e.g. password or seal) if required by the DSO.	Test with 4.5.3	P
4.7.4.2.3	Induction generator based units In general no voltage support during faults and voltage steps is required from generating plants connected in LV distribution networks as the additional reactive current is expected to interfere with grid protection equipment.		N/A

	EN 50549-1:2019		
Clause	Requirement - Test	Result - Remark	Verdict
4.7.4.3	Generating plant with synchronous generating technology - Synchronous generator based units In general no voltage support during faults and voltage steps is required from generating plants connected in LV distribution networks as the additional reactive current is expected to interfere with grid protection equipment. If the responsible party requires voltage support during faults and voltage steps for generating plants of type B connected to LV distribution grids, the clause 4.7.4 of EN50549-2 applies.		Р
4.8	EMC and power quality Similar to any other apparatus or fixed installation, generating units shall comply with the requirements on electromagnetic compatibility established in Directive 2014/30/EU or 2014/53/EU, whichever applies. EMC limits and tests, described in EN 61000 series, have been traditionally developed for loads, without taking into account the particularities of generating units, such as their capability to create overvoltages or high frequency disturbances due to the presence of power converters, which were either impossible or less frequent in case of loads.		Р
4.9	Interface protection		Р
4.9.1	General According to HD 60364-5-551:2010, 551.7.4, means of automatic switching shall be provided to disconnect the generating plant from the distribution network in the event of loss of that supply or deviation of the voltage or frequency at the supply terminals from values declared for normal supply. This automatic means of disconnection has following main objectives: • prevent the power production of the generating plant to cause an overvoltage situation in the distribution network it is connected to. Such overvoltages could result in damages to the equipment connected to the distribution network as well as the distribution network itself; • detect unintentional island situations and disconnect the generating plant in this case. This is contributing to prevent damage to other equipment, both in the producers' installations and the distribution network due to out of phase re-closing and to allow for maintenance work after an intentional disconnection of a section of the distribution network. • assist in bringing the distribution network to a controlled state in case of voltage or frequency deviations beyond corresponding regulation values.		P

	EN 50549-1:2019			
Clause	Requirement - Test	Result - Remark	Verdict	
	 disconnect the generating plant from the distribution network in case of faults internal to the power generating plant. Protection against internal faults (short-circuits) shall be coordinated with network protection, according to DSO protection criteria. Protection against e.g. overload, electric shock and against fire hazards shall be implemented additionally according to HD 60364-1 and local requirements. prevent damages to the generating unit due to incidents (e.g. short circuits) on the distribution network Interface protections may contribute to preventing damage to the generating units due to out-of-phase reclosing of automatic reclosing which may happen after some hundreds of ms. However, in some countries some technologies of generating units are explicitly required to have an appropriate immunity level against the consequences of out-of-phase reclosing. The type of protection and the sensitivity and operating times depend upon the protection and the characteristics of the distribution network. A wide variety of approaches to achieve the above mentioned objectives is used throughout Europe. Besides the passive observation of voltage and frequency other active and passive methods are available and used to detect island situations. The requirements given in this clause are intended to provide the necessary functions for all known approaches as well as to give guidance in their use. Which functions are available in a product shall be stated in 		P	
	the product documentation. The interface protection system shall comply with the requirements of this European Standard, the available functions and configured settings shall comply with the requirements of the DSO and the responsible party. In any case, the settings defined shall be understood as the values for the interface protection system, i.e. where there is a wider technical capability of the generation module, it shall not be withheld by the settings of the protections (other than the interface protection). For micro generating plants, the interface protection system and the point of measurement might be integrated into the generating units. For generating plants with nominal current above 16 A the DSO may define a threshold above which the interface protection system shall be realized as a dedicated device and not integrated into the generating units.	Integrated into the generating units If specified by country requirement, the interface protection shall not be integrated	Р	

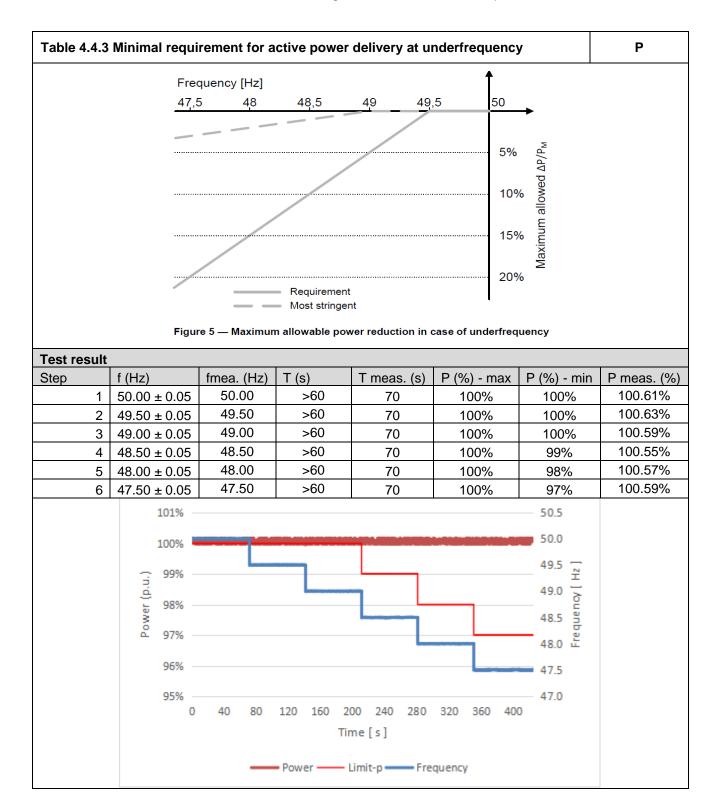
EN 50549-1:2019			
Clause	Requirement - Test	Result - Remark	Verdict
	to place the protection system as close to the point of connection as possible, to avoid tripping due to overvoltages resulting from the voltage rise within the producer's network; • to allow for periodic field tests. In some countries periodic field tests are not required if the protection system meets the requirements of single fault safety. The interface protection relay acts on the interface switch. The DSO may require that the interface protection relay acts additionally on another switch with a proper delay in case the interface switch fails to operate. In case of failure of the power supply of the interface protection, the interface protection shall trigger the interface switch without delay. An uninterruptible power supply may be required by the DSO, for instance in case of UVRT capability, delay in protection etc. In case of field adjustable settings of threshold and operation time, means shall be provided to protect the settings from unpermitted interference (e.g. password or seal) if required by the DSO.		Р
4.9.2	Void		N/A
4.9.3	Requirements on voltage and frequency protection	See appended table 4.9.3	Р
4.9.3.1	General Part or all of the following described functions may be required by the DSO and the responsible party. In case of three phase generating units/plants and in all cases when the protection system is implemented as an external protection system in a three phase power supply system, all phase to phase voltages and, if a neutral conductor is present, all phase to neutral voltages shall be evaluated. The frequency shall be evaluated on at least one of the voltages.		Р
	If multiple signals (e.g. 3 phase to phase voltages) are to be evaluated by one protection function, this function shall evaluate all of the signals separately. The output of each evaluation shall be OR connected, so that if one signal passes the threshold of a function, the function shall trip the protection in the specified time. The minimum required accuracy for protection is: • for frequency measurement ± 0,05 Hz; • for voltage measurement ± 1 % of Un. • The reset time shall be ≤50ms • The interface protection relay shall not conduct continuous starting and disengaging operations of the interface protection relay. Therefore a reasonable reset ratio shall be implemented which shall not be zero but be below 2% of nominal value for voltage and below 0,2Hz for frequency.		Р

	EN 50549-1:2019		
Clause	Requirement - Test	Result - Remark	Verdict
4.9.3.2	Undervoltage protection [27] The protection shall comply with EN 60255-127. The evaluation of the r.m.s. or the fundamental value is allowed. Undervoltage protection may be implemented with two completely independent protection thresholds, each one able to be activated or not. The standard adjustment ranges are as follows. Undervoltage threshold stage 1 [27 <]: • Threshold (0,2 – 1) <i>U_n</i> adjustable by steps of 0,01 <i>U_n</i> • Operate time (0,1 – 100) s adjustable in steps of 0,1 s Undervoltage threshold stage 2 [27 < <]: • Threshold (0,2 – 1) <i>U_n</i> adjustable by steps of 0,01 <i>U_n</i> • Operate time (0,1 – 5) s adjustable in steps of 0,05 s The undervoltage threshold stage 2 is not applicable for	See appended table 4.9.3.2	Р
4.9.3.3	micro-generating plants Overvoltage protection [59] The protection shall comply with EN 60255-127. The evaluation of the r.m.s. or the fundamental value is allowed. Overvoltage protection may be implemented with two completely independent protection thresholds, each one able to be activated or not. The standard adjustment ranges are as follows. Overvoltage threshold stage 1 [59 >]: • Threshold (1,0 − 1,2) <i>U_n</i> adjustable by steps of 0,01 <i>U_n</i> • Operate time (0,1 − 100) s adjustable in steps of 0,1 s Overvoltage threshold stage 2 [59 > >]: • Threshold (1,0 − 1,30) <i>U_n</i> adjustable by steps of 0,01 <i>U_n</i> • Operate time (0,1 − 5) s adjustable in steps of 0,05 s	See appended table 4.9.3.3	P
4.9.3.4	Overvoltage 10 min mean protection The calculation of the 10 min value shall comply with the 10 min aggregation of EN 61000-4-30 Class S, but deviating from EN 61000-4-30 as a moving window is used. Therefore the function shall be based on the calculation of the square root of the arithmetic mean of the squared input values over 10 min. The calculation of a new 10 min value at least every 3 s is sufficient, which is then to be compared with the threshold value. • Threshold (1,0 − 1,15) Un adjustable by steps of 0,01 Un • Start time ≤ 3s not adjustable • Time delay setting = 0 ms	See appended table 4.9.3.4	Р
4.9.3.5	Underfrequency protection [81 <] Underfrequency protection may be implemented with two completely independent protection thresholds, each one able to be activated or not. The standard adjustment ranges are as follows. Underfrequency threshold stage 1 [81 <]: • Threshold (47,0 − 50,0) Hz adjustment by steps of 0,1 Hz • Operate time (0,1 − 100) s adjustable in steps of 0,1 s Underfrequency threshold stage 2 [81 < <]: • Threshold (47,0 − 50,0) Hz adjustment by steps of 0,1 Hz • Operate time (0,1 − 5) s adjustable in steps of 0,05 s In order to use narrow frequency thresholds for islanding detection (see 4.9.3.3) it may be required to have the ability to activate and deactivate a stage by an external signal. The frequency protection shall function correctly in the input voltage range between 20 % <i>U_n</i> and 120 % <i>U_n</i> and shall be inhibited for input voltages of less than 20 % <i>U_n</i> . Under 0,2 U _n the frequency protection is inhibited. Disconnection may only happen based on undervoltage protection.	See appended table 4.9.3.5	Р

	EN 50549-1:2019		
Clause	Requirement - Test	Result - Remark	Verdict
4.9.3.6	Overfrequency protection [81 >] Overfrequency protection may be implemented with two completely independent protection thresholds, each one able to be activated or not. The standard adjustment ranges are as follows. Overfrequency threshold stage 1 [81 >]: • Threshold (50,0 - 52,0) Hz adjustment by steps of 0,1 Hz • Operate time (0,1 - 100) s adjustable in steps of 0,1 s Overfrequency threshold stage 2 [81 > >]: • Threshold (50,0 - 52,0) Hz adjustment by steps of 0,1 Hz • Operate time (0,1 - 5) s adjustable in steps of 0,05 s In order to use narrow frequency thresholds for islanding detection (see4.9.3.3) it may be required to have the ability to activate and deactivate a stage by an external signal. The frequency protection shall function correctly in the input voltage range between 20 % Un and 120 % Un and shall be inhibited for input voltages of less than 20 % Un.	See appended table 4.9.3.6	Р
4.9.4	Means to detect island situation		Р
4.9.4.1	General sides the passive observation of voltage and frequency further means to detect an island may be required by the DSO. Detecting islanding situations shall not be contradictory to the immunity requirements of 4.5. Commonly used functions include: • Active methods tested with a resonant circuit; • ROCOF tripping; • Switch to narrow frequency band; • Vector shift • Transfer trip. Only some of the methods above rely on standards. Namely for ROCOF tripping and for the detection of a vector shift, also called a vector jump, currently no European Standard is available.		Р
4.9.4.2	Active methods tested with a resonant circuit These are methods which pass the resonant circuit test for PV inverters according to EN 62116	See appended table 4.9.4	Р
4.9.4.3	Switch to narrow frequency band (see Annex E and Annex F) In case of local phenomena (e.g. a fault or the opening of circuit breaker along the line) the DSO in coordination with the responsible party may require a switch to a narrow frequency band to increase the interface protection relay sensitivity. In the event of a local fault it is possible to enable activation of the restrictive frequency window (using the two underfrequency/overfrequency thresholds described in 4.9.2.5 and 4.9.2.6) correlating its activation with another additional protection function. If required by the DSO, a digital input according to 4.9.4 shall be available to allow the DSO the activation of a restrictive frequency window by communication.		Р
4.9.5	Digital input to the interface protection If required by the DSO, the interface protection shall have at least two configurable digital inputs. These inputs can for example be used to allow transfer trip or the switching to the narrow frequency band.		Р
4.10	Connection and starting to generate electrical power		Р

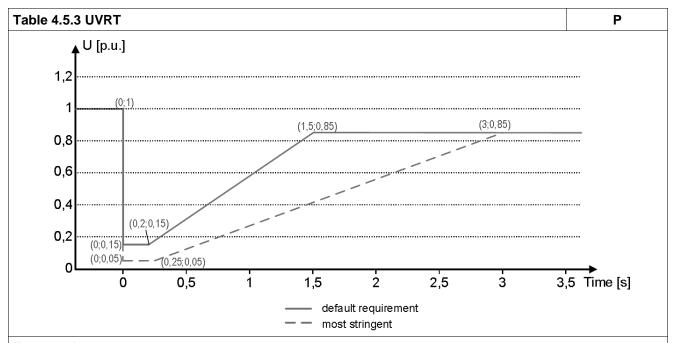
	EN 50549-1:2019		
Clause	Requirement - Test	Result - Remark	Verdict
4.10.1	General Connection and starting to generate electrical power is only allowed after voltage and frequency are within the allowed voltage and frequency ranges for at least the specified observation time. It shall not be possible to overrule these conditions. Within these voltage and frequency ranges, the generating plant shall be capable of connecting and starting to generate electrical power. The setting of the conditions depends on whether the connection is due to a normal operational startup or an automatic reconnection after tripping of the interface protection. In case the settings for automatic reconnection after tripping and starting to generate power are not distinct in a generating plant, the tighter range and the start-up gradient shall be used. The frequency range, the voltage range, the observation time and the power gradient shall be field adjustable. For field adjustable settings, means shall be provided to protect the settings from unpermitted interference (e.g.		Р
4.10.2	password or seal) if required by the DSO. Automatic reconnection after tripping The frequency range, the voltage range, the observation time shall be adjustable in the range according to Table 3 column 2. If no settings are specified by the DSO and the responsible party, the default settings for the reconnection after tripping of the interface protection are according to Table 3 column 3. After reconnection, the active power generated by the generating plant shall not exceed a specified gradient expressed as a percentage of the active nominal power of the unit per minute. If no gradient is specified by the DSO and the responsible party, the default setting is 10 % Pn/min. Generating modules for which it is technically not feasible to increase the power respecting the specified gradient over the full power range may connect after 1 min to 10 min (randomized value, uniformly distributed) or later.	See appended table 4.10.2	Р
4.10.3	Starting to generate electrical power The frequency range, the voltage range, the observation time shall be adjustable in the range according to Table 4 column 2. If no settings are specified by the DSO and the responsible party, the default settings for connection or starting to generate electrical power due to normal operational startup or activity are according to Table 4 column 3. If applicable, the power gradient shall not exceed the maximum gradient specified by the DSO and the responsible party. Heat driven CHP generating units do not need to keep a maximum gradient, since the start up is randomized by the nature of the heat demand. For manual operations performed on site (e.g. for the purpose of initial start-up or maintenance) it is permitted to deviate from the observation time and ramp rate.	See appended table 4.10.3 Default settings are applied	Р
4.10.4	Synchronization Synchronizing a generating plant/unit with the distribution network shall be fully automatic i.e. it shall not be possible to manually close the switch between the two systems to carry out synchronization.		Р
4.11	Ceasing and reduction of active power on set point		Р

	EN 50549-1:2019		
Clause	Requirement - Test	Result - Remark	Verdict
4.11.1	Ceasing active power Generating plants with a maximum capacity of 0,8 kW or more shall be equipped with a logic interface (input port) in order to cease active power output within five seconds following an instruction being received at the input port. If required by the DSO and the responsible party, this includes remote operation.	See appended table 4.11	р
4.11.2	Reduction of active power on set point For generating modules of type B, a generating plant shall be capable of reducing its active power to a limit value provided remotely by the DSO. The limit value shall be adjustable in the complete operating range from the maximum active power to minimum regulating level. The adjustment of the limit value shall be possible with a maximum increment of 10% of nominal power. A generation unit/plant shall be capable of carrying out the power output reduction to the respective limit within an envelope of not faster than 0,66 % P _N / s and not slower than 0,33 % P _N / s with an accuracy of 5 % of nominal power. Generating plants are permitted to disconnect from the network at a limit value below it minimum regulating level. If required by the DSO, this includes remote operation.	See appended table 4.11	Р
4.12	Remote information exchange Generating plants whose power is above a threshold to be determined by the DSO and the responsible party shall have the capacity to be monitored by the DSO or TSO control centre or control centres as well as receive operation parameter settings for the functions specified in this European Standard from the DSO or TSO control centre or control centres.		N/A


EN 50549-1:2019				
Clause	Requirement - Test	Result - Remark	Verdict	
4.13	Requirements regarding single fault tolerance of interface protection system and interface switch If required in 4.3.2, the interface protection system and the interface switch shall meet the requirements of single fault tolerance. A single fault shall not lead to a loss of the safety functions. Faults of common cause shall be taken into account if the probability for the occurrence of such a fault is significant. Whenever reasonably practical, the individual fault shall be displayed and lead to the disconnection of the power generating unit or system. Series-connected switches shall each have a independent breaking capacity corresponding to the rated current of the generating unit and corresponding to the short circuit contribution of the generating unit. The short-time withstand current of the switching devices shall be coordinated with maximum short circuit power at the connection point. At least one of the switches shall be a switch-disconnector suitable for overvoltage category 2. For single-phase generating units, the switch shall have one contact of this overvoltage category for both the neutral conductor and the line conductor. For poly-phase generating units, it is required to have one contact of this overvoltage category for all active conductors. The second switch may be formed of electronic switching components from an inverter bridge or another circuit provided that the electronic switching components can be switched off by control signals and that it is ensured that a failure is detected and leads to prevention of the operation at the latest at the next reconnection. For PV-inverters without simple separation between the network and the PV generating unit (e.g. PV Inverter without transformer) both switches mentioned in the paragraph above shall be switchdisconnectors with the requirements described therein, although one switching device is permitted to be located between PV array and PV inverter.		P	
Annex A	Interconnection guidance		Info	
Annex B	Void		Info	
Annex C	Parameter Table		Info	
Annex D	List of national requirements applicable for generating plants		Info	
Annex E	Loss of Mains and overall power system security		Info	
Annex F	Examples of protection strategies		Info	
Annex H	Relationship between this European standard and the COMMISSION REGULATION (EU) 2016/631		Info	

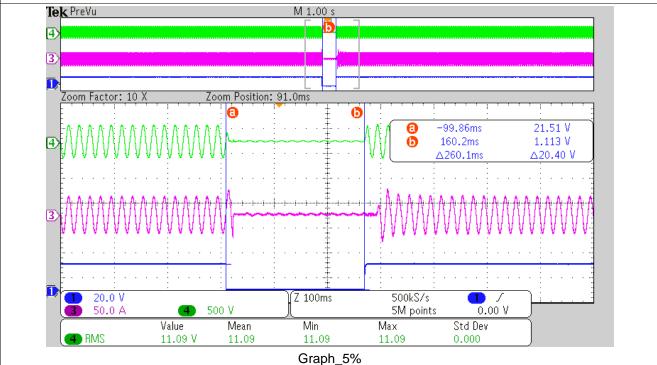
Appendices Table-Testing Result

rating frequency rang	je					P
Frequency ran	ge			Time period for operation stringent requirement		
47.0 Hz – 47.5 l	Ηz	Not re		20s		
47.5 Hz - 48.5h	łz	30	90 min			
48.5 Hz - 49.0 l	Ηz	30	90 min ^a			
49.0 Hz - 51.0 H	Ηz	Unli	Unlimited			
51.0 Hz - 51.5 l	Ηz	30	min ^a		90	min
51.5 Hz - 52.0 H	Ηz	Not required			15	min
				ne period	ls are	required by
F (Hz)- measure	Tir	ne (S)-limit	Time (S)			Result
47.000		20s	>20s			Pass
47.500		90min	>90min		Pass	
48.500		90min	>90min		Pass	
51.500		90min	>90min		Pass	
52.000		90min	>90min			Pass
47.000		15min	>15min			Pass
7000 6000 5000 M 4000 2000 1000 0 5		10000 Time [s]	15000 ency	52.0 51.0 50.0 49.0 48.0 47.0	Frequency [Hz]	
	Frequency range 47.0 Hz - 47.5 Hz - 48.5 Hz - 49.0 Hz - 51.0 Hz - 51.5 Hz - 52.0 Hz -	Frequency range 47.0 Hz - 47.5 Hz 47.5 Hz - 48.5 Hz 48.5 Hz - 49.0 Hz 49.0 Hz - 51.0 Hz 51.0 Hz - 51.5 Hz 51.5 Hz - 52.0 Hz a: Respecting the legal framer The responsible party in some F (Hz)- measure Tire 47.000 47.500 48.500 51.500 52.000 47.000 7000 6000 7000 6000 5000 5000 5000 7000 5000	Frequency range 47.0 Hz - 47.5 Hz Not re 47.5 Hz - 48.5 Hz 48.5 Hz - 49.0 Hz 49.0 Hz - 51.0 Hz 51.0 Hz - 51.5 Hz a: Respecting the legal framework, it is possit The responsible party in some synchronous at F (Hz)- measure 47.000 48.500 90min 48.500 90min 51.500 90min 47.000 15min	Frequency range Time period for operation Minimum requirement 47.0 Hz − 47.5 Hz Not required 47.5 Hz − 48.5Hz 30 min a 48.5 Hz − 49.0 Hz 30 min a 49.0 Hz − 51.0 Hz Unlimited 51.0 Hz − 51.5 Hz 30 min a 51.5 Hz − 52.0 Hz Not required a: Respecting the legal framework, it is possible that longer ting the responsible party in some synchronous areas, Time (S) 47.000 20s >20s 47.500 90min >90min 48.500 90min >90min 51.500 90min >90min 52.000 90min >90min 47.000 15min >15min	Frequency range	Frequency range Time period for operation Minimum requirement Time period stringent requirement 47.0 Hz – 47.5 Hz Not required 2 47.5 Hz - 48.5Hz 30 min a 90 min a 48.5 Hz - 49.0 Hz 30 min a 90 min a 49.0 Hz - 51.0 Hz Unlimited Unlimited 51.5 Hz - 52.0 Hz Not required 15 a: Respecting the legal framework, it is possible that longer time periods are in the responsible party in some synchronous areas, F (Hz)- measure Time (S)-limit Time (S) 47.000 20s >20s >20s 47.500 90min >90min >90min 51.500 90min >90min >90min 52.000 90min >90min >15min

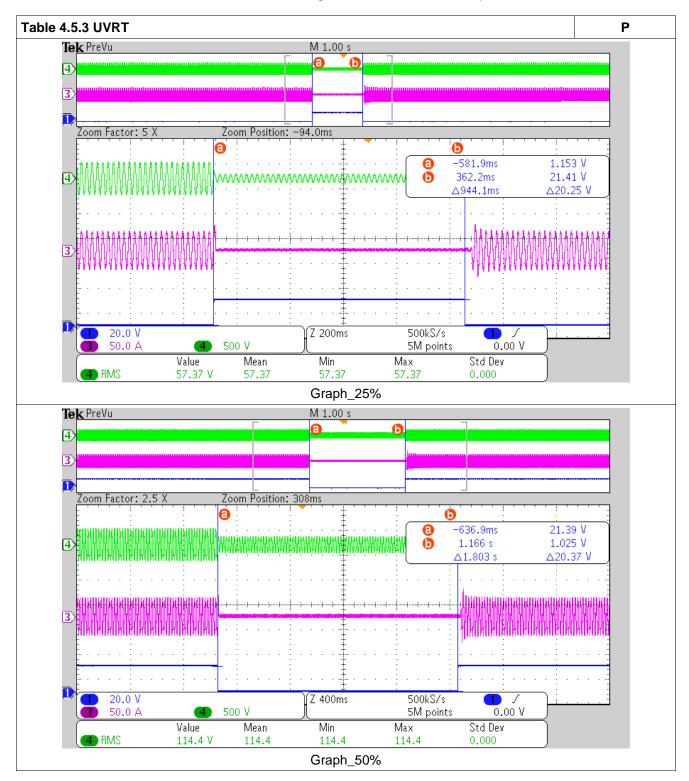

Table 4.4.4 (Contir	nuous volta	ge ope	ration rai	nge					Р
Test result										
Step	Vol	tage (%)		P (%)		P meas. (%)	Tin	ne (s)		T meas (s)
1		100		100		100.32	>	>60		85
2		85		100 (*)		90.77	>	120		170
3		100		100		100.23		>5		30
4		110		100		100.57	>	120		180
(*) Active pov	ver re	duction is all	owed c	due to curi	rent lim	itation.				
		102%						120%	6	
	Power (p.u.)	98% ————————————————————————————————————	80	120 160			60 400 4	110% 100% 90% 80% 70% 60%		
					Time	e [s]				

Power —— Voltage

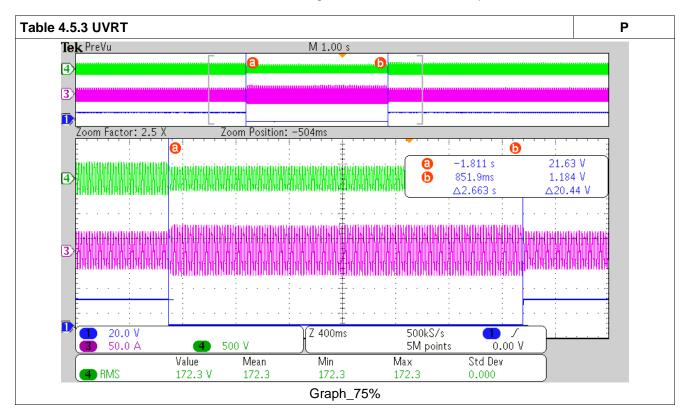
Table 4.5.2 Rate of change of frequency (ROCOF)							
Test result							
Steps	f (Hz)	Δt (s) step change	Step time	f meas. (Hz)	t meas. (s)		
1	50.00 ± 0.05		>10 s	50.00	30		
2	52.00 ± 0.05	< 1 s	>10 s	52.00	30		
3	50.00 ± 0.05	<1s	>10 s	50.00	30		
4	48.00 ± 0.05	<1s	48.00	30			
5	50.00 ± 0.05	< 1 s	>10 s	50.00	30		
	7000 6000 5000 4000 3000 2000 1000 0		90 120 ime [s]	48.0	Frequency Hz		
	7000 — 6000 — 5000 — 60	Т	32 33 ime [s] r Frequency	52.5 52.0 51.5 51.0 50.5 50.0 49.5 49.0 34	Frequency [Hz]		

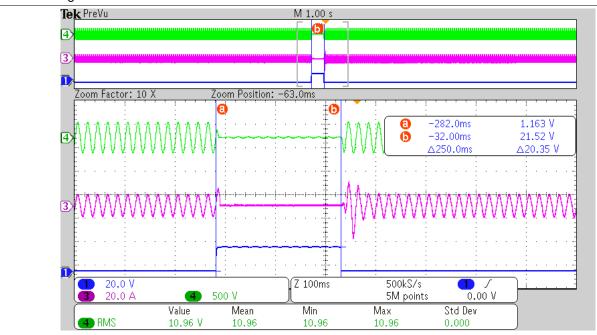

Test result

Test at full load (>90%)

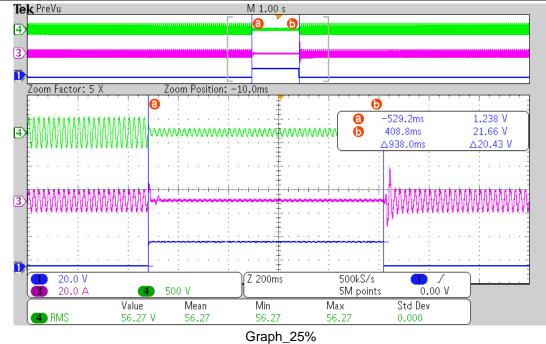

Udip	t min (ms)	U meas. (V)	T meas. (ms)	P recover (s)
5%	250	4.82%	260.1	0.064
25%	938	24.94%	944.1	0.070
50%	1797	49.74%	1803.0	0.062
75%	2656	74.91%	2663.0	0.042

Remark:

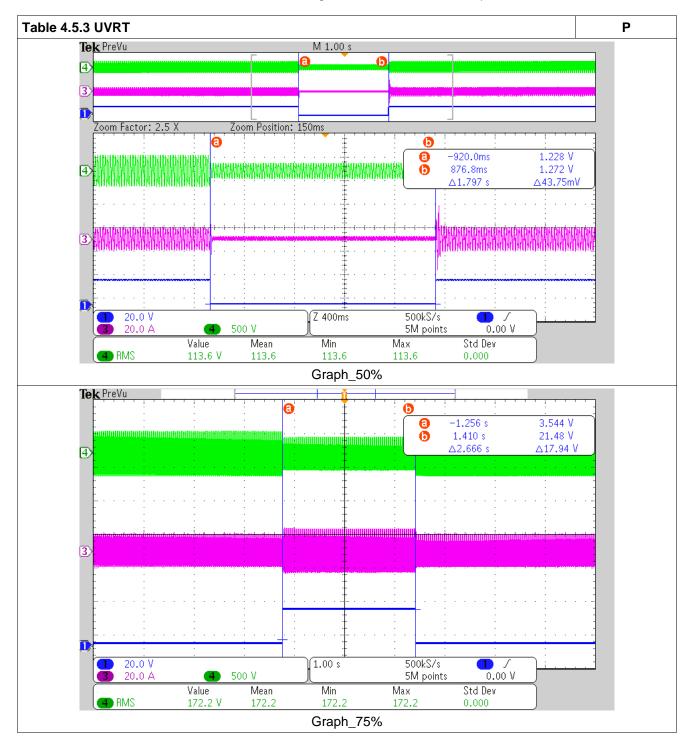

The tests are performed together with clause 4.7.4.2.2 Zero current mode and enabling of default setting: Undervoltage of 50%Un.

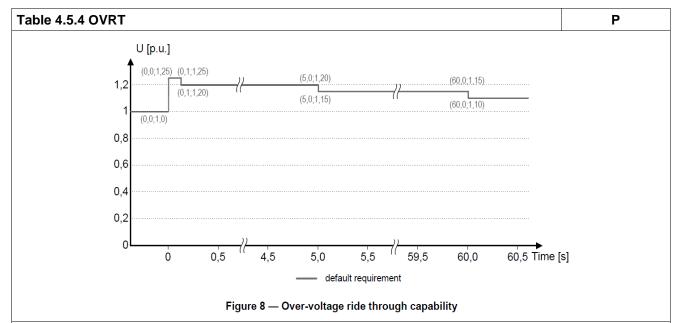

Table 4.5.3 UVRT P

Test at partial load (30%)

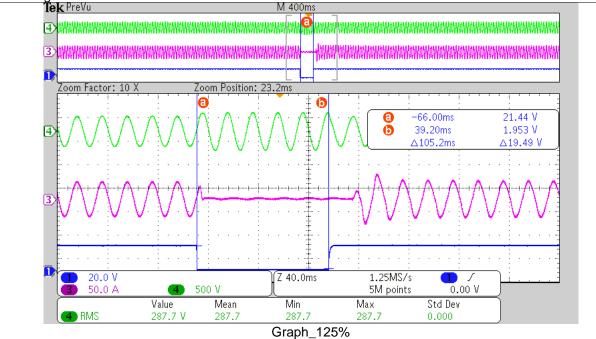

Udip	t min (ms)	U meas. (V)	T meas. (ms)	P recover (s)
5%	250	4.77%	250.0	0.012
25%	938	24.47%	938.0	0.042
50%	1797	49.39%	1797.0	0.036
75%	2656	74.87%	2666.0	0.018

Remark:

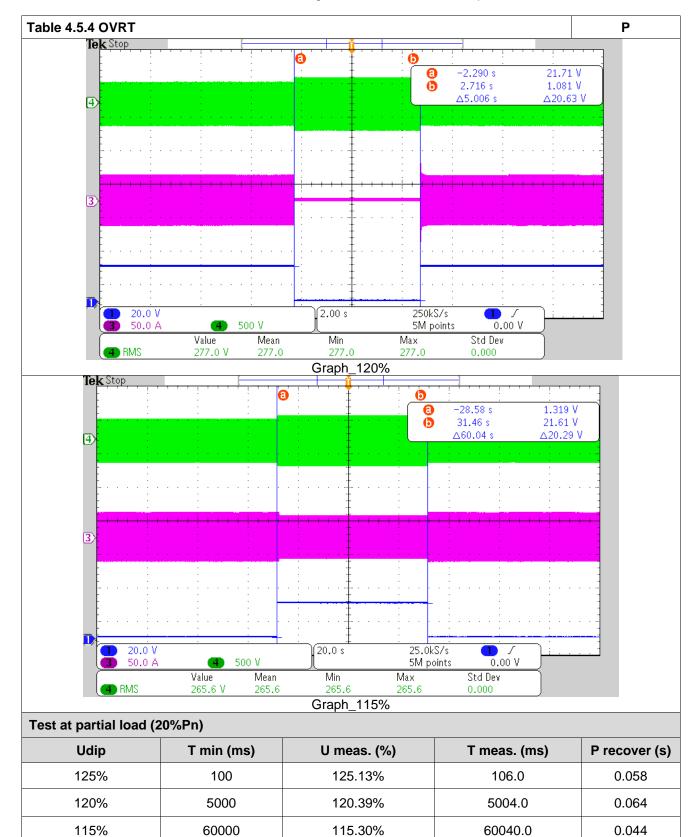

The tests are performed together with clause 4.7.4.2.2 Zero current mode and enabling of default setting: Undervoltage of 50%Un.



Test result

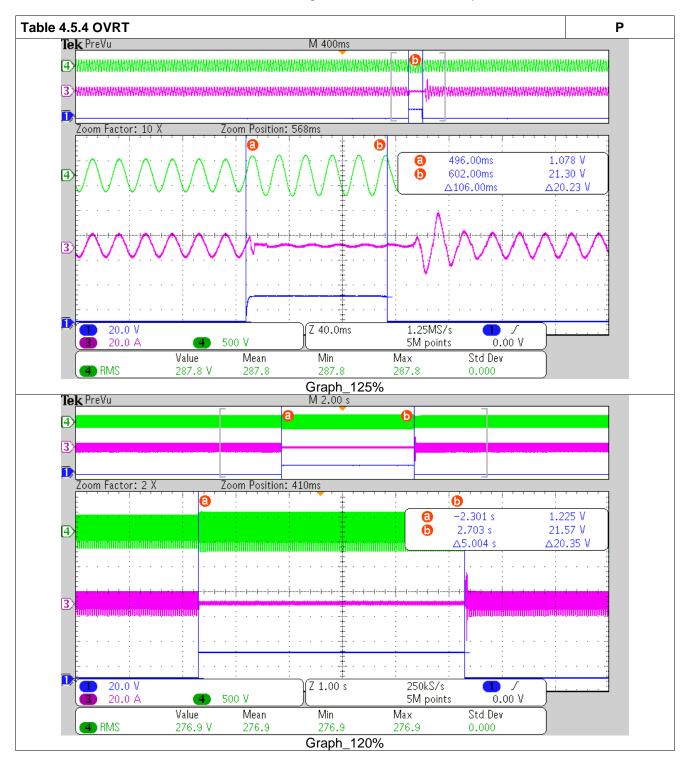

Test at full load (>90%)

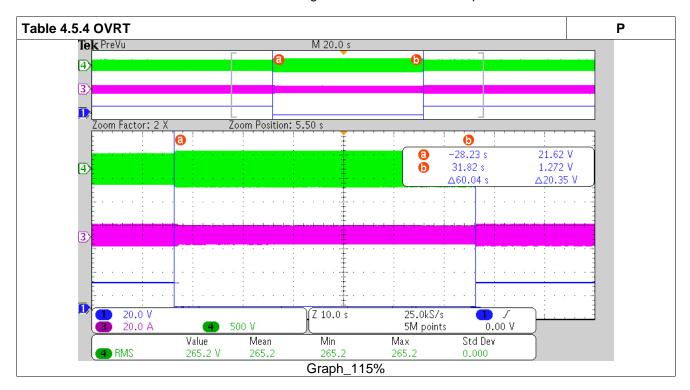
Tost at full load (>30	770)			
Udip	t min (ms)	U meas. (%)	T meas. (ms)	P recover (s)
125%	100	125.09%	105.2	0.059
120%	5000	120.43%	5006	0.064
115%	60000	115.48%	60040	0.045

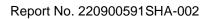

Remark:

The tests are performed together with clause 4.7.4.2.2 Zero current mode and enabling of default setting:

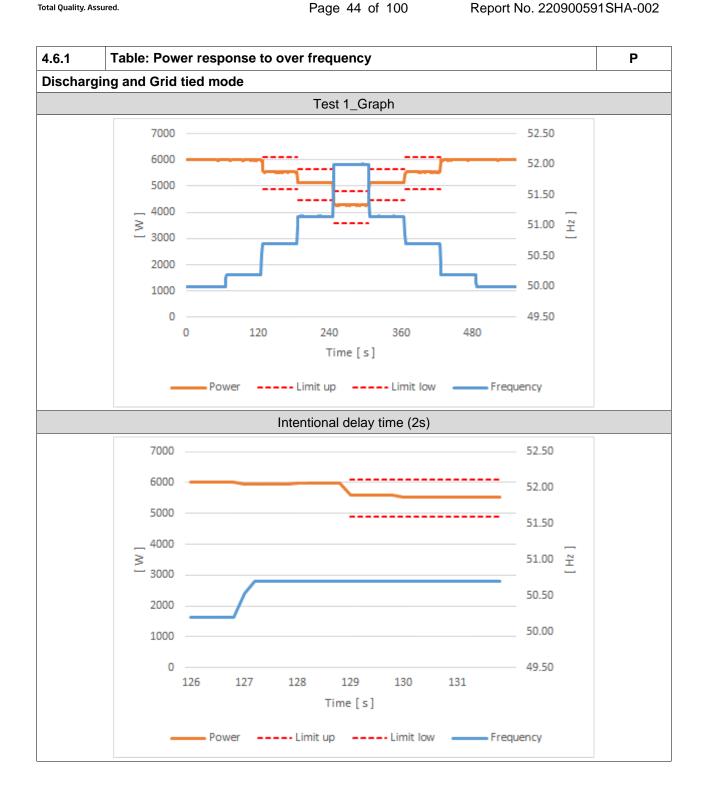
Overvoltage of 120%Un.





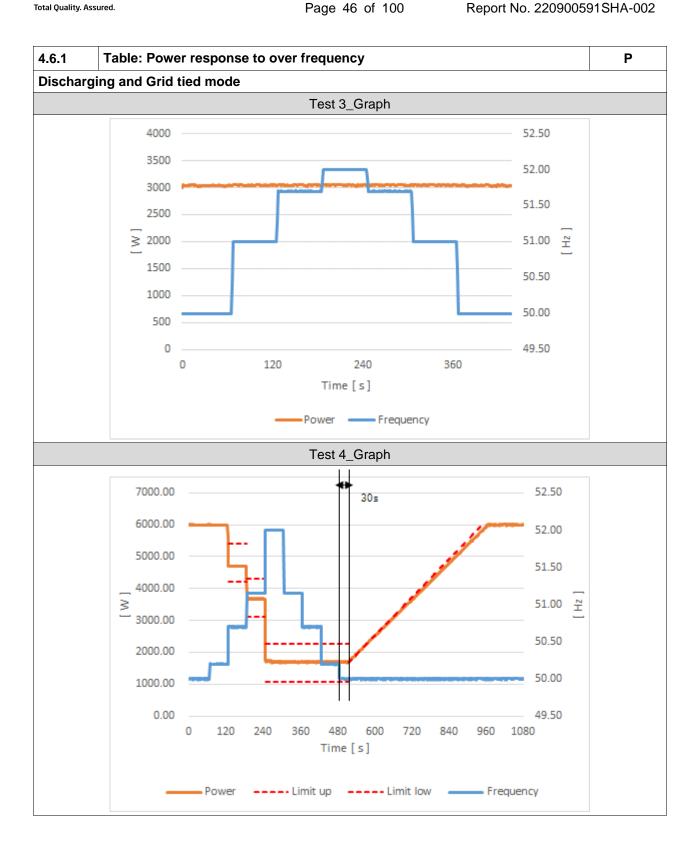

Remark:

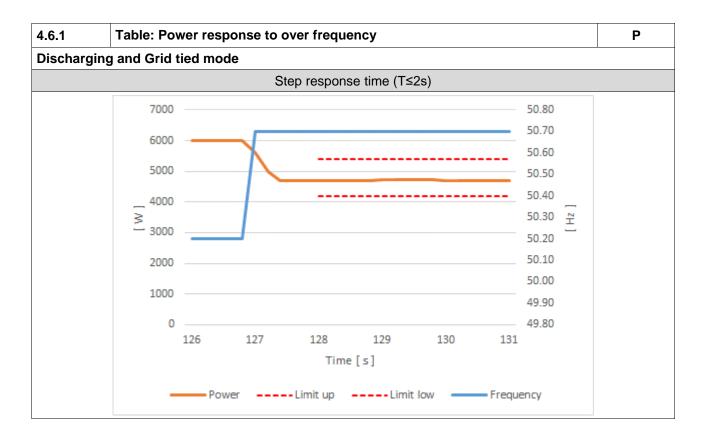
The tests are performed together with clause 4.7.4.2.2 Zero current mode and enabling of default setting: Overvoltage of 120%Un.



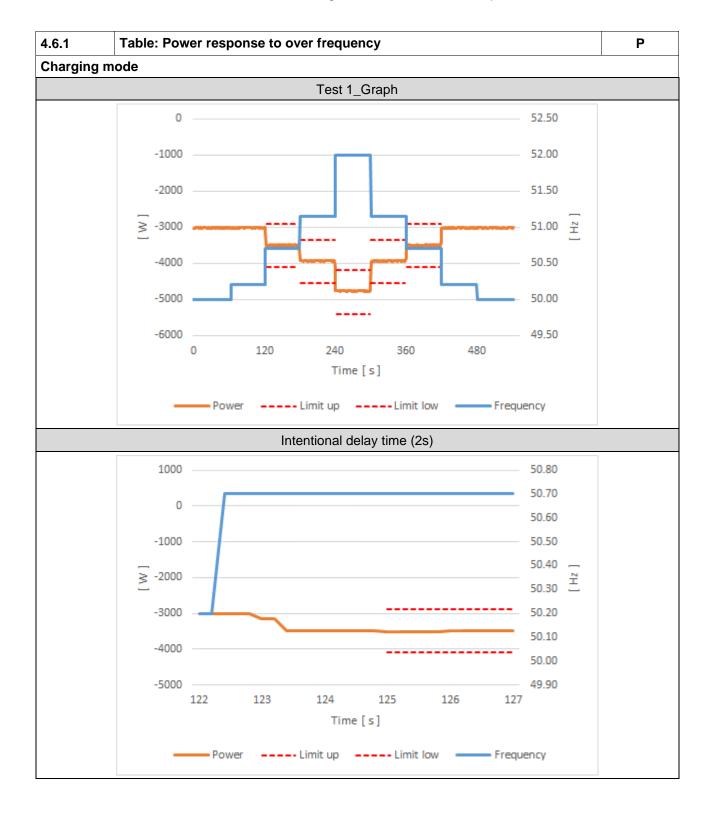
4.6.1 Table:	Power res	sponse to ov	er frequency				Р				
Discharging and (Grid tied m	ode									
	,	100% Pn, f1 =50.2Hz; droop=12%; f-stop deactivated, with delay of 2 s									
Test 1	f (Hz)	Measured output Power (W)	Calculated from standard characteristic curve P (W)	Tolerance between measured P and calculated P (W)	Tolerance Limit (W)	For a reduction of active power of 50% Pmax T≤2s	For a reduction of active power T≤20s				
50Hz ± 0.01Hz	50.00	6003.92	6000.00								
50.2Hz ± 0.01Hz	50.20	5997.35	6000.00								
50.70Hz ± 0.01Hz	50.70	5546.15	5500.00	46.15	± 600	1.4s	1.4s				
51.15Hz ± 0.01Hz	51.15	5128.12	5050.00	78.12	± 600	0.4s	0.6s				
52.0Hz ± 0.01Hz	52.00	4277.14	4200.00	77.14	± 600	0.2s	0.4s				
51.15Hz ± 0.01Hz	51.15	5127.64	5050.00	77.64	± 600	0.4s	0.4s				
50.70Hz ± 0.01Hz	50.70	5536.42	5500.00	36.42	± 600	0.2s	0.4s				
50.2Hz ± 0.01Hz	50.20	5998.31	6000.00			0.4s	0.6s				
50Hz ± 0.01Hz	50.00	6006.04	6000.00								
		100% Pn, f1 =50.2Hz; droop=2%; f-stop deactivated, no delay									
Test 2	f (Hz)	Measured output Power (W)	Calculated from standard characteristic curve P (W)	Tolerance between measured P and calculated P (W)	Tolerance Limit (W)	For a reduction of active power of 50% Pmax T≤2s	For a reduction of active power T≤20s				
50Hz ± 0.01Hz	50.00	6007.54									
50.2Hz ± 0.01Hz	50.20	5966.27									
50.70Hz ± 0.01Hz	50.70	3022.82	3000.00	22.82	± 600	0.4s	0.4s				
51.15Hz ± 0.01Hz	51.15	455.90	300.00	155.90	± 600	0.2s	0.4s				
52.0Hz ± 0.01Hz	52.00	23.53	0.00	23.53	± 600	0.4s	0.4s				
51.15Hz ± 0.01Hz	51.15	471.70	300.00	171.70	± 600	0.2s	0.4s				
50.70Hz ± 0.01Hz	50.70	3071.37	3000.00	71.37	± 600	0.4s	0.4s				
50.2Hz ± 0.01Hz	50.20	5999.88				0.4s	0.4s				
50Hz ± 0.01Hz	50.00	6004.92									

4.6.1	Table: P	ower res	sponse to ov	er frequency				Р			
Dischargin	ng and Gr	id tied m	ode								
		50% Pn, f1 =52.0Hz; droop=5%; f-stop deactivated, no delay									
Tes	t 3	f (Hz)	Measured output Power (W)	Calculated from standard characteristic curve P (W)	Tolerance between measured P and calculated P (W)	Tolerance Limit (W)	For a reduction of active power of 50% Pmax T≤2s	For a reduction of active power T≤20s			
50Hz ± 0.0)1Hz	50.00	3039.09								
51.0Hz ± 0).01Hz	51.00	3045.32	3000.00	45.32	± 600					
51.70Hz ±	0.01Hz	51.70	3044.51	3000.00	44.51	± 600					
52.0Hz ± 0).01Hz	52.00	3047.25	3000.00	47.25	± 600					
51.70Hz ±	0.01Hz	51.70	3047.03	3000.00	47.03	± 600					
51.00Hz ±	0.01Hz	51.00	3047.15	3000.00	47.15	± 600					
50Hz ± 0.0)1Hz	50.00	3040.88								
		100% Pn, f1 =50.2Hz; droop=5%; f-stop =50.1, no delay, Deactivation time t _{stop} 30s									
Tes	t 4	f (Hz)	Measured output Power (W)	Calculated from standard characteristic curve P (W)	Tolerance between measured P and calculated P (W)	Tolerance Limit (W)	For a reduction of active power of 50% Pmax T≤2s	For a reduction of active power T≤20s			
50Hz ± 0.0)1Hz	50.00	5997.84	6000							
50.2Hz ± 0).01Hz	50.20	5988.50	6000							
50.70Hz ±	0.01Hz	50.70	4702.30	4800	-97.70	± 600	0.4s	0.4s			
51.15Hz ±	0.01Hz	51.15	3667.42	3720	-52.58	± 600	0.2s	0.4s			
52.0Hz ± 0).01Hz	52.00	1710.10	1680	30.10	± 600	0.4s	0.4s			
51.15Hz ±	0.01Hz	51.15	1698.12	1680	18.12	± 600					
50.70Hz ±	0.01Hz	50.70	1698.43	1680	18.43	± 600					
50.2Hz ± 0).01Hz	50.20	1698.29	1680		± 600					
50Hz ± 0.0)1Hz	50.00	6003.97	6000							

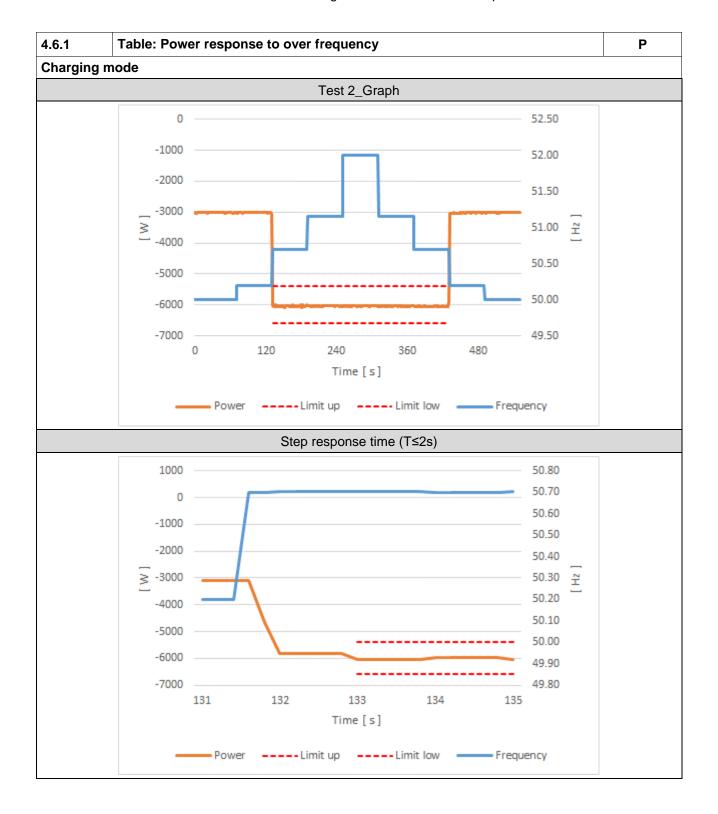




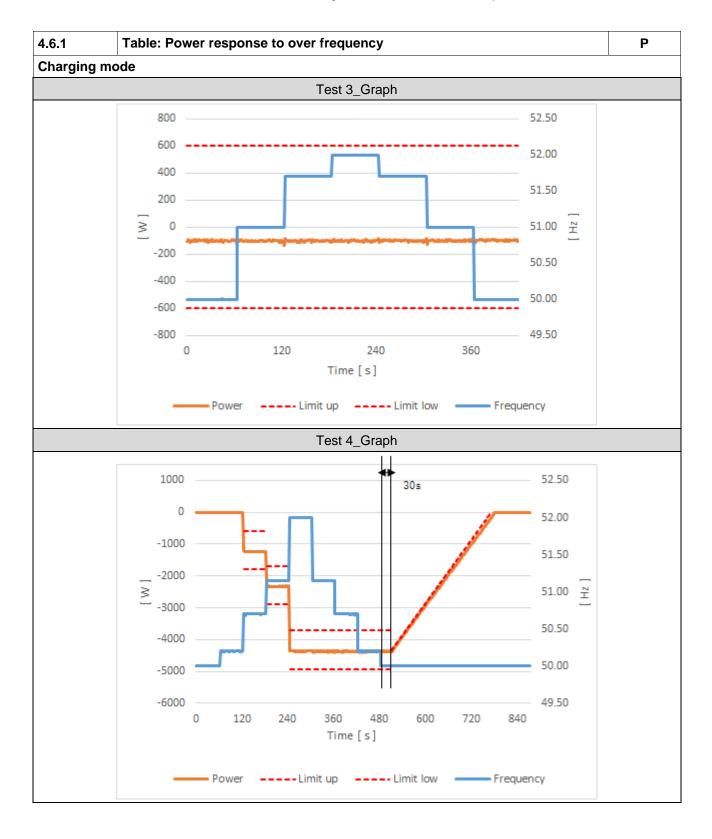
Page 47 of 100

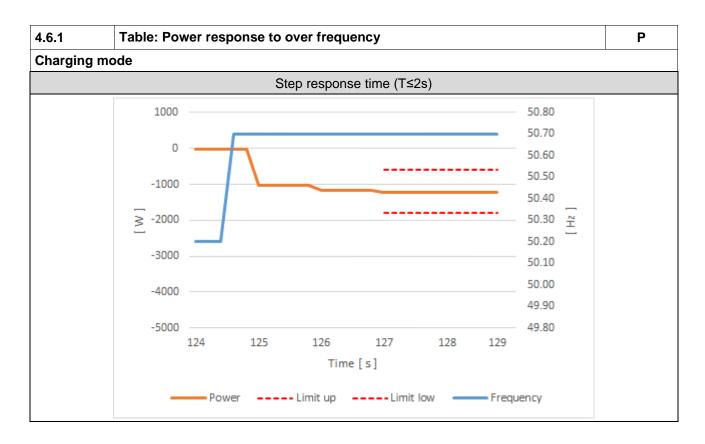


4.6.1 Table: I	Power res	sponse to ov	er frequency				Р			
Charging mode						1				
	-	·50% Pn, f1 =	:50.2Hz; droop=	=12%; f-stop	deactivated,	with delay of	2 s			
Test 1	f (Hz)	Measured output Power (W)	Calculated from standard characteristic curve P (W)	Tolerance between measured P and calculated P (W)	Tolerance Limit (W)	For a reduction of active power of 50% Pmax T≤2s	For a reduction of active power T≤20s			
50Hz ± 0.01Hz	50.00	-3016.89	-3000							
50.2Hz ± 0.01Hz	50.20	-3015.60	-3000							
50.70Hz ± 0.01Hz	50.70	-3494.61	-3500	5.39	± 600	1.2s	1.4s			
51.15Hz ± 0.01Hz	51.15	-3935.88	-3950	14.12	± 600	0.4s	0.6s			
52.0Hz ± 0.01Hz	52.00	-4763.58	-4800	36.42	± 600	0.2s	0.4s			
51.15Hz ± 0.01Hz	51.15	-3934.00	-3950	16.00	± 600	0.2s	0.4s			
50.70Hz ± 0.01Hz	50.70	-3497.42	-3500	2.58	± 600	0.2s	0.4s			
50.2Hz ± 0.01Hz	50.20	-3018.73	-3000			0.4s	0.6s			
50Hz ± 0.01Hz	50.00	-3017.87	-3000							
	-50% Pn, f1 =50.2Hz; droop=2%; f-stop deactivated, no delay									
Test 2	f (Hz)	Measured output Power (W)	Calculated from standard characteristic curve P (W)	Tolerance between measured P and calculated P (W)	Tolerance Limit (W)	For a reduction of active power of 50% Pmax T≤2s	For a reduction of active power T≤20s			
50Hz ± 0.01Hz	50.00	-3015.94	-3000							
50.2Hz ± 0.01Hz	50.20	-3017.05	-3000							
50.70Hz ± 0.01Hz	50.70	-6030.57	-6000	-30.57	± 600	0.4s	0.4s			
51.15Hz ± 0.01Hz	51.15	-6034.58	-6000	-34.58	± 600	0.4s	0.4s			
52.0Hz ± 0.01Hz	52.00	-6034.27	-6000	-34.27	± 600	0.1s	0.1s			
51.15Hz ± 0.01Hz	51.15	-6036.45	-6000	-36.45	± 600	0.1s	0.1s			
50.70Hz ± 0.01Hz	50.70	-6046.50	-6000	-46.50	± 600	0.1s	0.1s			
50.2Hz ± 0.01Hz	50.20	-3021.65	-3000			0.4s	0.6s			
50Hz ± 0.01Hz	50.00	-3013.62	-3000							

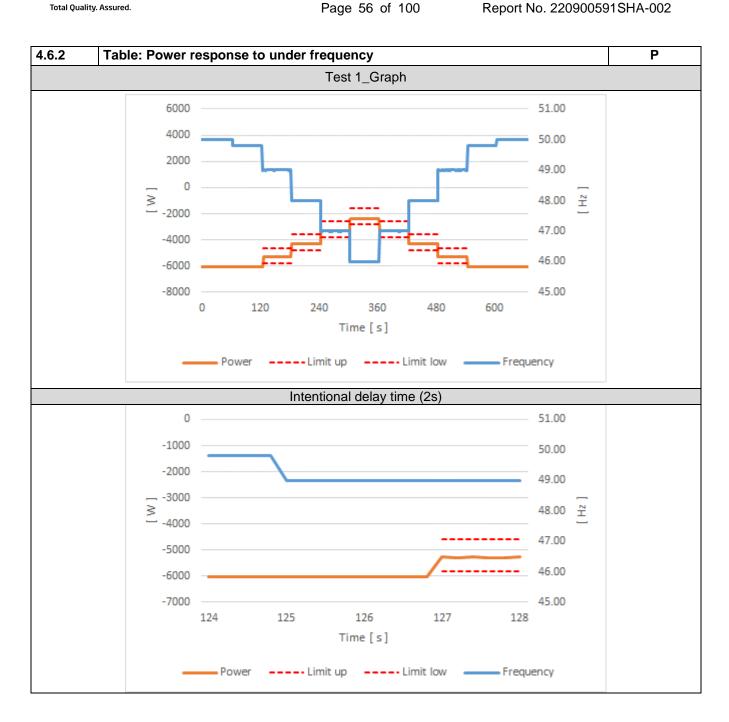


4.6.1 Table: I	Power res	sponse to ov	er frequency				Р		
Charging mode						1			
Test 3	f (Hz)	Measured output Power (W)	Calculated from standard characteristic curve P (W)	Tolerance between measured P and calculated P (W)	Tolerance Limit (W)	For a reduction of active power of 50% Pmax T≤2s	For a reduction of active power T≤20s		
50Hz ± 0.01Hz	50.00	-100.80							
51.0Hz ± 0.01Hz	51.00	-101.68	0	-101.68	± 600				
51.70Hz ± 0.01Hz	51.70	-101.47	0	-101.47	± 600				
52.0Hz ± 0.01Hz	52.00	-101.02	0	-101.02	± 600				
51.70Hz ± 0.01Hz	51.70	-100.15	0	-100.15	± 600				
51.00Hz ± 0.01Hz	51.00	-100.52	0	-100.52	± 600				
50Hz ± 0.01Hz	50.00	-97.79							
	0% Pn, f1 =50.2Hz; droop=5%; f-stop =50.1, no delay, Deactivation time tstop 30s								
Test 4	f (Hz)	Measured output Power (W)	Calculated from standard characteristic curve P (W)	Tolerance between measured P and calculated P (W)	Tolerance Limit (W)	For a reduction of active power of 50% Pmax T≤2s	For a reduction of active power T≤20s		
50Hz ± 0.01Hz	50.00	-9.98	0						
50.2Hz ± 0.01Hz	50.20	-10.05	0						
50.70Hz ± 0.01Hz	50.70	-1230.22	-1200	-30.22	± 600	0.4s	0.6s		
51.15Hz ± 0.01Hz	51.15	-2327.22	-2280	-47.22	± 600	0.4s	0.6s		
52.0Hz ± 0.01Hz	52.00	-4350.08	-4320	-30.08	± 600	0.4s	0.6s		
51.15Hz ± 0.01Hz	51.15	-4365.18	-4320	-45.18	± 600				
50.70Hz ± 0.01Hz	50.70	-4368.10	-4320	-48.10	± 600				
50.2Hz ± 0.01Hz	50.20	-4368.46	-4320						
50Hz ± 0.01Hz	50.00	-10.03	0						

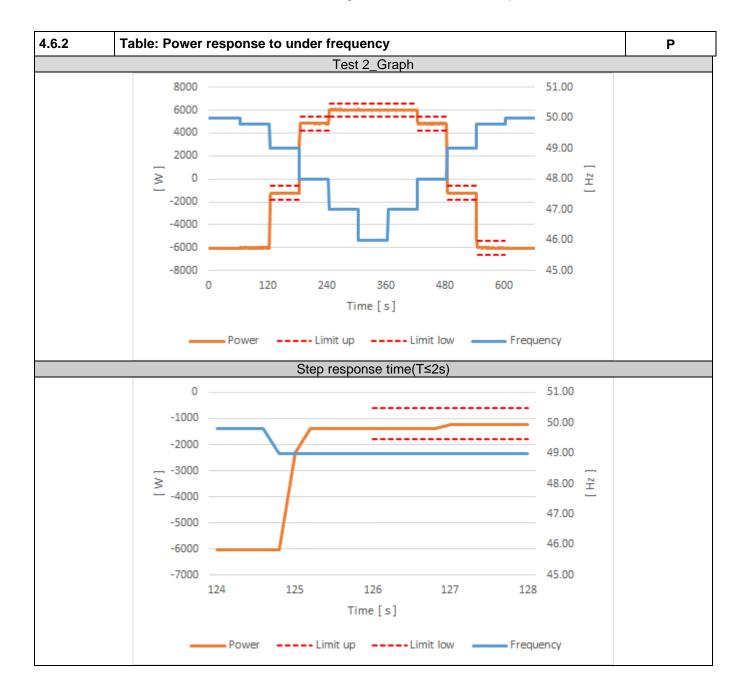




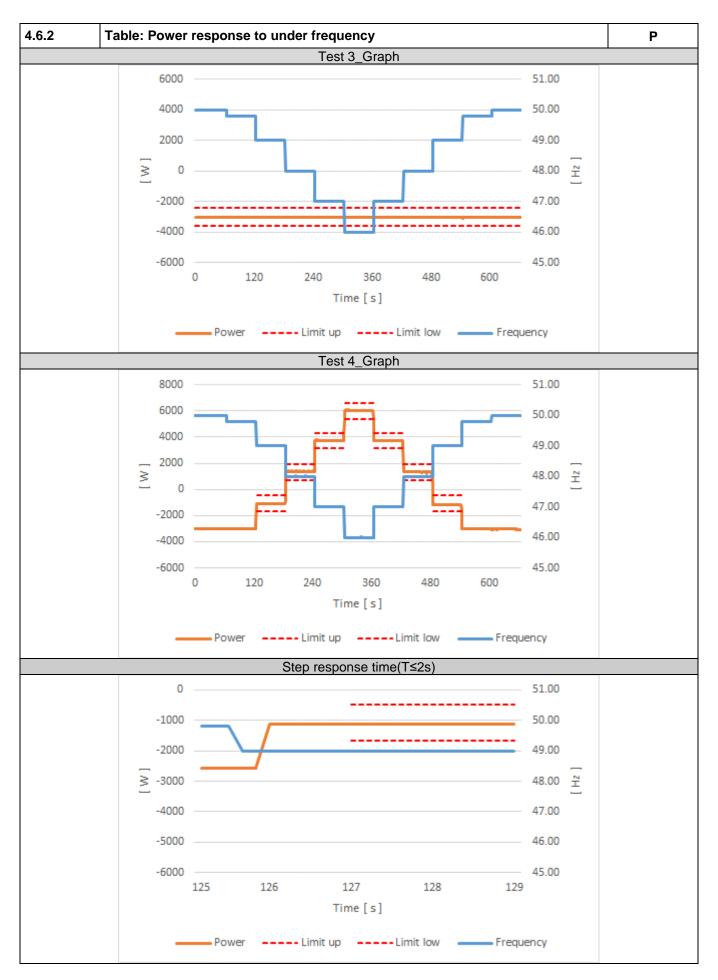
Page 53 of 100

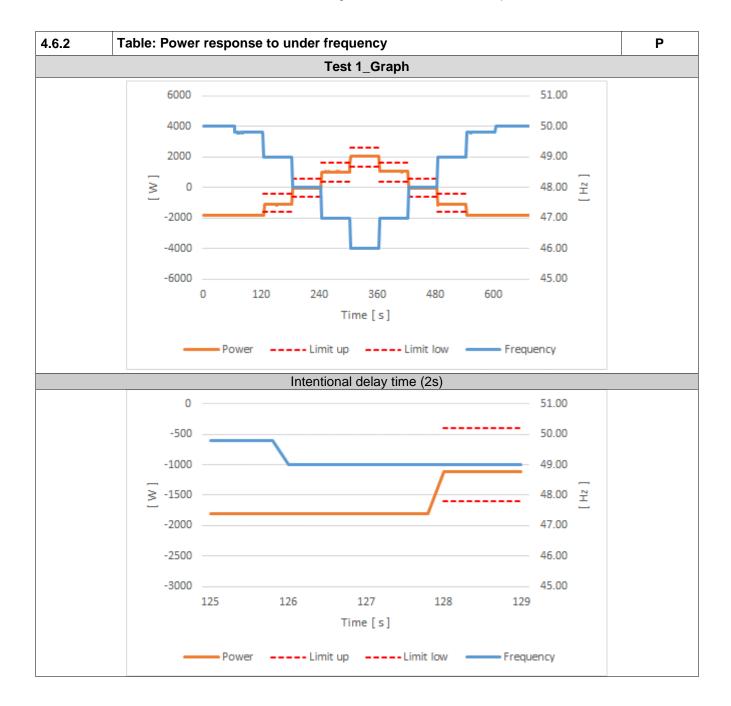


4.6.2 Table:	Power re	sponse to u	nder frequency				Р		
·		-1	100% Pn, f1 =49.8	Hz; droop=12	%; with delay	of 2 s			
Test 1	f (Hz)	Measured output Power (W)	Calculated from standard characteristic curve P (W)	Tolerance between measured P and calculated P (W)	Tolerance Limit (W)	For a reduction of active power of 50% Pmax T≤2s	For a reduction of active power T≤20s		
50Hz ± 0.01Hz	50.00	-6043.41							
49.8Hz ± 0.01Hz	49.80	-6042.25	-6000.00	-42.25	± 600				
49.0Hz ± 0.01z	49.00	-5302.35	-5200.00	-102.35	± 600	1.2s	1.4s		
48.0Hz ± 0.01z	48.00	-4299.75	-4200.00	-99.75	± 600	0.4s	0.6s		
47.0Hz ± 0.01z	47.00	-3324.00	-3200.00	-124.00	± 600	0.2s	0.4s		
46.0Hz ± 0.01z	46.00	-2393.65	-2200.00	-193.65	± 600	0.4s	0.6s		
47.0Hz ± 0.01z	47.00	-3310.73	-3200.00	-110.73	± 600	0.4s	0.6s		
48.0Hz ± 0.01z	48.00	-4299.25	-4200.00	-99.25	± 600	0.4s	0.4s		
49.0Hz ± 0.01z	49.00	-5274.68	-5200.00	-74.68	± 600	0.4s	0.6s		
49.8Hz ± 0.01Hz	49.80	-6050.17	-6000.00	-50.17	± 600	0.4s	0.4s		
50.0Hz ± 0.01Hz	50.00	-6058.66							
	-100% Pn, f1 =49.8Hz; droop=2%; no delay								
Test 2	f (Hz)	Measured output Power (W)	Calculated from standard characteristic curve P (W)	Tolerance between measured P and calculated P (W)	Tolerance Limit (W)	For a reduction of active power of 50% Pmax T≤2s	For a reduction of active power T≤20s		
50Hz ± 0.01Hz	50.00	-6059.19							
49.8Hz ± 0.01Hz	49.80	-6017.38	-6000.00	-17.38	± 600				
49.0Hz ± 0.01Hz	49.00	-1264.73	-1200.00	-64.73	± 600	0.2s	0.6s		
48.0Hz ± 0.01Hz	48.00	4808.48	4800.00	8.48	± 600	0.4s	0.6s		
47.0Hz ± 0.01Hz	47.00	6033.30	6000.00	33.30	± 600	0.4s	0.4s		
46.0Hz ± 0.01Hz	46.00	6017.27	6000.00	17.27	± 600				
47.0Hz ± 0.01Hz	47.00	6026.70	6000.00	26.70	± 600				
48.0Hz ± 0.01Hz	48.00	4831.92	4800.00	31.92	± 600	0.4s	0.4s		
49.0Hz ± 0.01Hz	49.00	-1215.75	-1200.00	-15.75	± 600	0.2s	0.4s		
49.8Hz ± 0.01Hz	49.80	-6003.19	-6000.00	-3.19	± 600	0.6s	0.8s		
50.0Hz ± 0.01Hz	50.00	-6046.90							

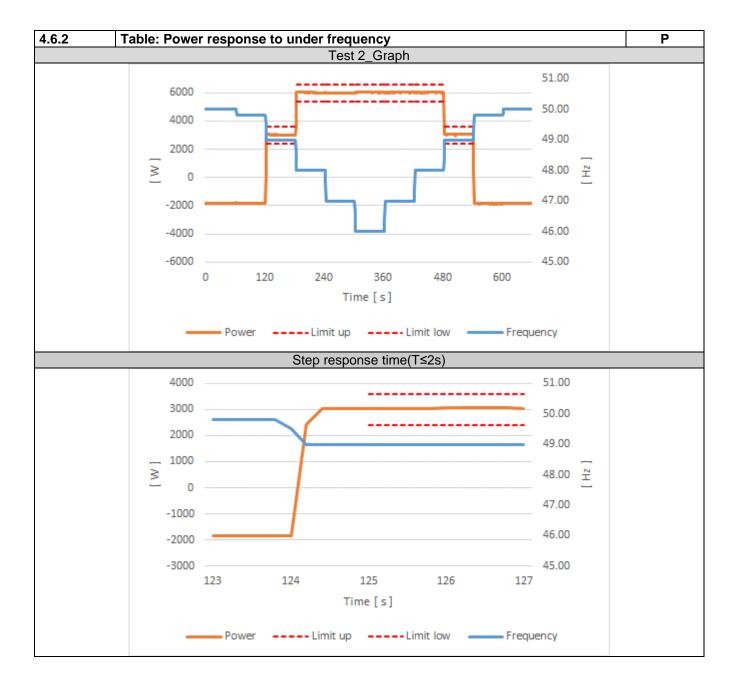


4.6.2 Table:	Power respo	nse to unde	r frequency				Р			
		-	50% Pn, f1 =4	16.0Hz; droop	=5%; no dela	у				
Test 3	f (Hz)	Measured output Power (W)	Calculated from standard characterist ic curve P (W)	Tolerance between measured P and calculated P (W)	Tolerance Limit (W)	For a reduction of active power of 50% Pmax T≤2s	For a reduction of active power T≤20s			
50Hz ± 0.01Hz	50.00	-3024.48								
49.0Hz ± 0.01Hz	49.00	-3023.55	-3000.00	-23.55	± 600					
48.0Hz ± 0.01Hz	48.00	-3025.10	-3000.00	-25.10	± 600					
47.0Hz ± 0.01Hz	47.00	-3024.00	-3000.00	-24.00	± 600					
46.0Hz ± 0.01Hz	46.00	-3025.22	-3000.00	-25.22	± 600					
47.0Hz ± 0.01Hz	47.00	-3024.73	-3000.00	-24.73	± 600					
48.0Hz ± 0.01Hz	48.00	-3025.13	-3000.00	-25.13	± 600					
49.0Hz ± 0.01Hz	49.00	-3024.77	-3000.00	-24.77	± 600					
50.0Hz ± 0.01Hz	50.00	-3024.75								
	-50% Pn, f1 =49.8Hz; droop=5%;									
Test 4	f (Hz)	Measured output Power (W)	Calculated from standard characterist ic curve P (W)	Tolerance between measured P and calculated P (W)	Tolerance Limit (W)	For a reduction of active power of 50% Pmax T≤2s	For a reduction of active power T≤20s			
50Hz ± 0.01Hz	50.00	-3024.03								
49.8Hz ± 0.01Hz	49.80	-3001.40	-3000.00	-1.40	± 600					
49.0Hz ± 0.01Hz	49.00	-1106.53	-1080.00	-26.53	± 600	0.4s	0.4s			
48.0Hz ± 0.01Hz	48.00	1378.35	1320.00	58.35	± 600	0.6s	0.8s			
47.0Hz ± 0.01Hz	47.00	3748.05	3720.00	28.05	± 600	0.4s	0.6s			
46.0Hz ± 0.01Hz	46.00	6012.72	6000.00	12.72	± 600	0.4s	0.4s			
47.0Hz ± 0.01Hz	47.00	3695.43	3720.00	-24.57	± 600	0.4s	0.6s			
48.0Hz ± 0.01Hz	48.00	1324.83	1320.00	4.83	± 600	0.2s	0.4s			
49.0Hz ± 0.01Hz	49.00	-1152.53	-1080.00	-72.53	± 600	0.6s	0.8s			
49.8Hz ± 0.01Hz	49.80	-3023.17	-3000.00	-23.17	± 600					
50.0Hz ± 0.01Hz	50.00	-3044.63								

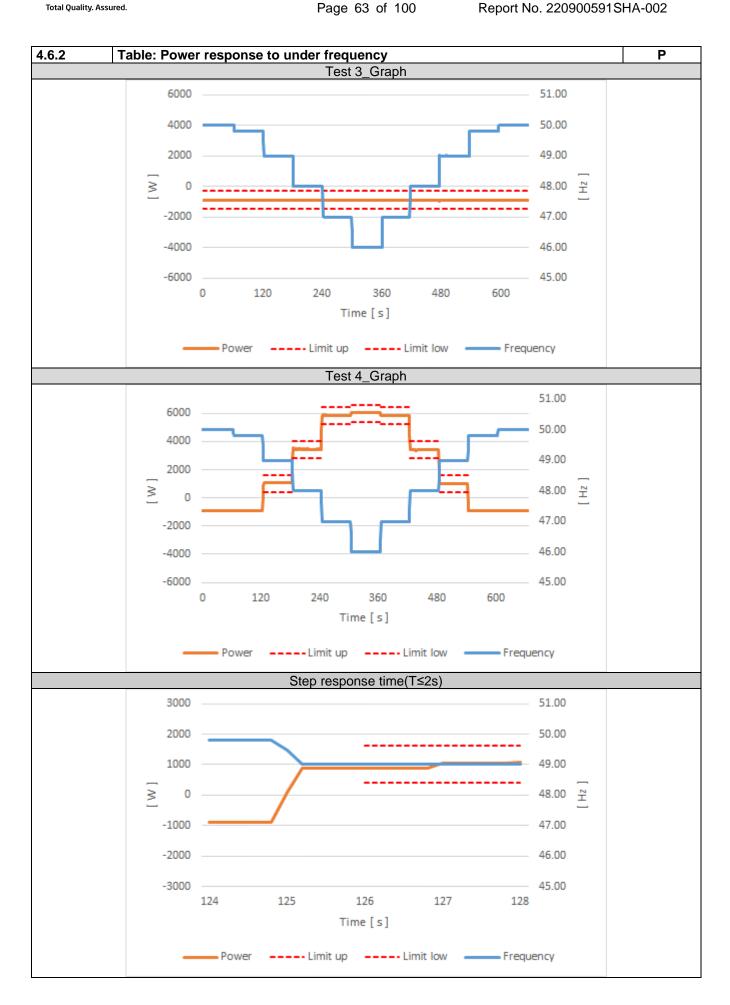


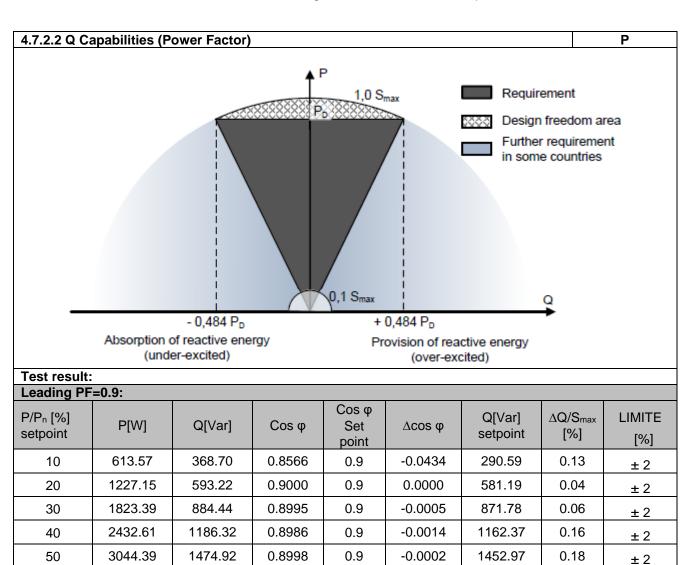


4.6.2 Table:	Power r	esponse to u	nder frequency				Р			
•		-30	% Pn, f1 =49.8h	lz; droop=12°	%; with delay	of 2 s				
Test 5	f (Hz)	Measured output Power (W)	Calculated from standard characteristic curve P (W)	Tolerance between measured P and calculated P (W)	Tolerance Limit (W)	For a reduction of active power of 50% Pmax T≤2s	For a reduction of active power T≤20s			
50Hz ± 0.01Hz	50.00	-1824.45								
49.8Hz ± 0.01Hz	49.80	-1812.65	-1800.00	-12.65	± 600					
49.0Hz ± 0.01z	49.00	-1136.10	-1000.00	-136.10	± 600	1.2s	1.4s			
48.0Hz ± 0.01z	48.00	-13.03	0.00	-13.03	± 600	0.8s	1.0s			
47.0Hz ± 0.01z	47.00	1040.22	1000.00	40.22	± 600	0.6s	0.8s			
46.0Hz ± 0.01z	46.00	2044.53	2000.00	44.53	± 600	0.6s	0.8s			
47.0Hz ± 0.01z	47.00	1051.53	1000.00	51.53	± 600	0.2s	0.4s			
48.0Hz ± 0.01z	48.00	-13.08	0.00	-13.08	± 600	0.4s	0.6s			
49.0Hz ± 0.01z	49.00	-1106.77	-1000.00	-106.77	± 600	0.6s	0.8s			
49.8Hz ± 0.01Hz	49.80	-1794.43	-1800.00	5.57	± 600	0.4s	0.6s			
50.0Hz ± 0.01Hz	50.00	-1794.69								
	-30% Pn, f1 =49.8Hz; droop=2%; no delay									
Test 6	f (Hz)	Measured output Power (W)	Calculated from standard characteristic curve P (W)	Tolerance between measured P and calculated P (W)	Tolerance Limit (W)	For a reduction of active power of 50% Pmax T≤2s	For a reduction of active power T≤20s			
50Hz ± 0.01Hz	50.00	-1807.73								
49.8Hz ± 0.01Hz	49.80	-1824.12	-1800.00	-24.12	± 600					
49.0Hz ± 0.01Hz	49.00	3023.59	3000.00	23.59	± 600	0.4s	1.4s			
48.0Hz ± 0.01Hz	48.00	6022.81	6000.00	22.81	± 600	0.6s	0.8s			
47.0Hz ± 0.01Hz	47.00	5998.05	6000.00	-1.95	± 600					
46.0Hz ± 0.01Hz	46.00	6027.46	6000.00	27.46	± 600					
47.0Hz ± 0.01Hz	47.00	6025.56	6000.00	25.56	± 600					
48.0Hz ± 0.01Hz	48.00	6025.10	6000.00	25.10	± 600					
49.0Hz ± 0.01Hz	49.00	3065.42	3000.00	65.42	± 600	0.4s	0.6s			
49.8Hz ± 0.01Hz	49.80	-1858.20	-1800.00	-58.20	± 600	0.2s	0.6s			
50.0Hz ± 0.01Hz	50.00	-1840.16								



4.6.2 Table:	Power	esponse to u	nder frequency				Р			
			-15% Pn, f1 =4	16.0Hz; droop	=5%; no dela	y				
Test 7	f (Hz)	Measured output Power (W)	Calculated from standard characteristic curve P (W)	Tolerance between measured P and calculated P (W)	Tolerance Limit (W)	For a reduction of active power of 50% Pmax T≤2s	For a reduction of active power T≤20s			
50Hz ± 0.01Hz	50.00	-917.54								
49.0Hz ± 0.01Hz	49.00	-921.02	-900.00	-21.02	± 600					
48.0Hz ± 0.01Hz	48.00	-919.33	-900.00	-19.33	± 600					
47.0Hz ± 0.01Hz	47.00	-919.76	-900.00	-19.76	± 600					
46.0Hz ± 0.01Hz	46.00	-920.77	-900.00	-20.77	± 600					
47.0Hz ± 0.01Hz	47.00	-920.67	-900.00	-20.67	± 600					
48.0Hz ± 0.01Hz	48.00	-920.12	-900.00	-20.12	± 600					
49.0Hz ± 0.01Hz	49.00	-921.38	-900.00	-21.38	± 600					
50.0Hz ± 0.01Hz	50.00	-921.93								
	-15% Pn, f1 =49.8Hz; droop=5%;									
Test 8	f (Hz)	Measured output Power (W)	Calculated from standard characteristic curve P (W)	Tolerance between measured P and calculated P (W)	Tolerance Limit (W)	For a reduction of active power of 50% Pmax T≤2s	For a reduction of active power T≤20s			
50Hz ± 0.01Hz	50.00	-906.65				-				
49.8Hz ± 0.01Hz	49.80	-893.42	-900.00	6.58	± 600					
49.0Hz ± 0.01Hz	49.00	1059.75	1020.00	39.75	± 600	0.4s	0.6s			
48.0Hz ± 0.01Hz	48.00	3453.97	3420.00	33.97	± 600	0.4s	1.2s			
47.0Hz ± 0.01Hz	47.00	5853.92	5820.00	33.92	± 600	0.4s	1.4s			
46.0Hz ± 0.01Hz	46.00	6042.03	6000.00	42.03	± 600	0.8s	1.0s			
47.0Hz ± 0.01Hz	47.00	5828.53	5820.00	8.53	± 600	0.6s	0.8s			
48.0Hz ± 0.01Hz	48.00	3406.80	3420.00	-13.20	± 600	0.4s	0.6s			
49.0Hz ± 0.01Hz	49.00	1008.92	1020.00	-11.08	± 600	0.4s	0.6s			
49.8Hz ± 0.01Hz	49.80	-919.90	-900.00	-19.90	± 600	0.4s	0.6s			
50.0Hz ± 0.01Hz	50.00	-902.60								





*Remark: Due to the max current limit, the active power can't get to 100%

0.8996

0.8996

0.8994

0.8992

0.9015

0.9

0.9

0.9

0.9

0.9

-0.0004

-0.0004

-0.0006

-0.0008

0.0015

1743.56

2034.15

2324.75

2615.34

0.31

0.34

0.34

0.57

± 2

± 2

± 2

± 2

1774.31

2063.13

2350.41

2653.45

2613.24

3656.44

4252.45

4838.40

5456.82

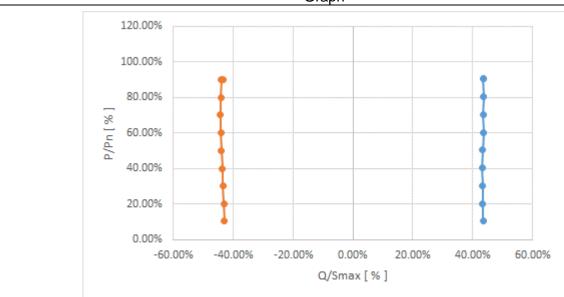
5444.87

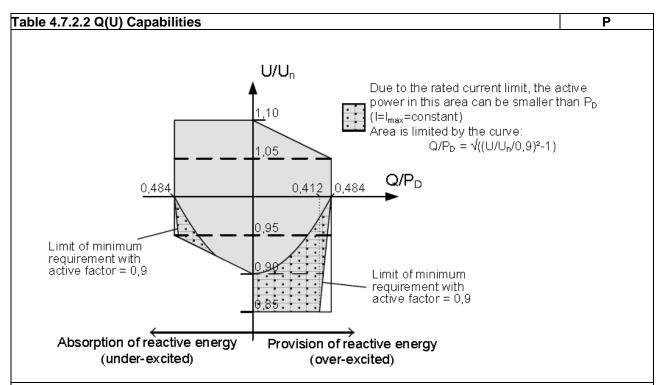
60

70

80

90


*100


4.7.2.2 Q	Capabilitie	s (Power F	actor)					Р			
Lagging P	F=-0.9:		•								
P/Pn [%] setpoint	P[W]	Q[Var]	Cosφ	Cosφ Set point	∆cosφ	Q[Var] setpoint	ΔQ/S _{max} [%]	LIMITE [%]			
10	615.85	-370.49	0.8563	0.9	-0.0437	-290.59	-0.13	± 2			
20	1181.75	-574.85	0.8989	0.9	-0.0011	-581.19	0.02	± 2			
30	1824.82	-867.72	0.9029	0.9	0.0029	-871.78	0.02	± 2			
40	2433.74	-1166.18	-0.03	± 2							
50	3041.34	-1454.33	0.9020	0.9	0.0020	-1452.97	-0.01	± 2			
60	3654.29	-1751.56	0.9017	0.9	0.0017	-1743.56	-0.08	± 2			
70	4246.50	-2039.60	0.9013	0.9	0.0013	-2034.15	-0.06	± 2			
80	4838.33	-2325.79	0.9012	0.9	0.0012	-2324.75	-0.01	± 2			
90	5452.88	-2624.89	0.9010	0.9	0.0010	-2615.34	-0.14	± 2			
100	5433.85	-2611.12	0.9013	0.9	0.0013						
Q=0:		1									
P/P _n [%] setpoint	P[W]	Q[Var]	Cosφ	Cosφ Set point	∆cosφ	Q[Var] setpoint	Δ Q/S _{max} [%]	LIMITE [%]			
10	616.55	67.29	0.9939	1.0	-0.0061	0.00	0.11	± 2			
20	1208.93	55.07	0.9989	1.0	-0.0011	0.00	0.18	± 2			
30	1832.52	57.13	0.9995	1.0	-0.0005	0.00	0.29	± 2			
40	2446.71	66.94	0.9996	1.0	-0.0004	0.00	0.45	± 2			
50	3060.10	29.57	0.9997	1.0	-0.0003	0.00	0.25	± 2			
60	3673.63	31.05	0.9998	1.0	-0.0002	0.00	0.31	± 2			
70	4273.98	-59.16	0.9999	1.0	-0.0001	0.00	-0.69	± 2			
80	4864.60	-67.90	0.9999	1.0	-0.0001	0.00	-0.91	± 2			
90	5483.36	-76.78	0.9999	1.0	-0.0001	0.00	-1.15	± 2			
100	6059.64	-84.92	0.9999	1.0	-0.0001	0.00	-1.42	± 2			
				Graph							
	120	0.00%									
	100	0.00%		1							
	80	0.00%		I							
						<i>y</i>					
	% G0.00% G0.00%										
40.00%											
	20	0.00%			1						
0.00%											
			-40.00% -2	0.00% 0.00		40.00%	60.00%				
				Q/Smax	×[%]						

	Pans (er Factor)				P
Q=43.58%Pr	า					
P/Pn [%] setpoint	P[W]	Q[Var]	Cosφ	Q[Var] setpoint	$\Delta Q/S_{max}$ [%]	LIMITE [%]
10	621.05	2610.17	0.2314	2614.80	-0.08	± 2
20	1219.64	2604.23	0.4240	2614.80	-0.18	± 2
30	1816.10	2602.52	0.5721	2614.80	-0.20	± 2
40	2413.55	2595.52	0.6808	2614.80	-0.32	± 2
50	3016.30	2601.26	0.7572	2614.80	-0.23	± 2
60	3612.44	2622.89	0.8091	2614.80	0.13	± 2
70	4210.93	2609.79	0.8499	2614.80	-0.08	± 2
80	4817.69	2623.26	0.8782	2614.80	0.14	± 2
90	5418.86	2609.98	0.9009	2614.80	-0.08	± 2
100	5419.06	2609.95	0.9009	2614.80	-0.08	± 2
Q=-43.58%P	'n					
P/Pn [%] setpoint	P[W]	Q[Var]	Cosφ	Q[Var] setpoint	$\Delta Q/S_{max}$ [%]	LIMITE [%
10	626.69	-2571.65	0.2366	-2614.80	0.72	± 2
20	1209.51	-2590.00	0.4225	-2614.80	0.41	± 2
30	1809.92	-2600.82	0.5703	-2614.80	0.23	± 2
40	2405.08	-2617.86	0.6766	-2614.80	-0.05	± 2
50	3010.28	-2635.63	0.7528	-2614.80	-0.35	± 2
60	3614.62	-2650.00	0.8068	-2614.80	-0.59	± 2
70	4210.00	-2660.00	0.8453	-2614.80	-0.75	± 2
80	4800.04	-2643.07	0.8760	-2614.80	-0.47	± 2
90	5400.53	-2640.00	0.8987	-2614.80	-0.42	± 2
100*	5401.40	-2610.00	0.9007	-2614.80	0.08	± 2
Remark: Du	e to the max cur	rent limit, the ac	ctive power ca	n't get to 100%		
			Graph			
	120.00%					

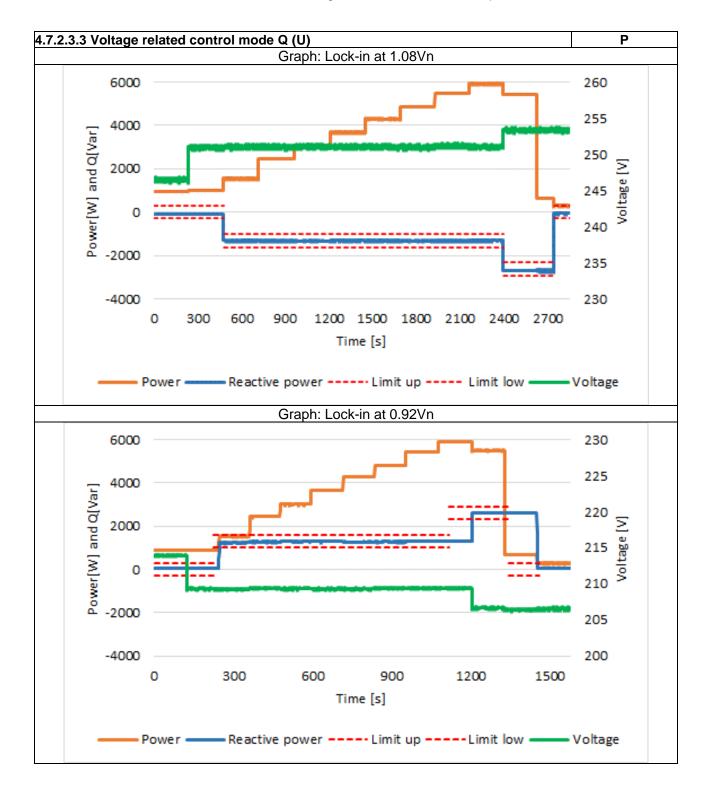
Test result:

Over-excited:

	AC o	utput		React	ive power mea	sured
Voltage		Measured		Reactive	Value	
setting [V/Vn]	Voltage [V]	[V/Vn]	Active power [W]	power [Var]	[Q/P _D]	Limits
1.10	253.33	1.10	6026.14	-83.97	-0.0139	±0.02
1.08	248.96	1.08	5908.24	1142.96	0.1935	0.194±0.02
1.05	241.93	1.05	5426.82	2608.76	0.4807	0.484±0.02
1.00	230.58	1.00	5426.33	2613.06	0.4816	0.484±0.02
0.95	218.96	0.95	5463.41	2631.23	0.4816	
0.92	211.74	0.92	5462.95	2624.34	0.4804	
0.90	207.44	0.90	5463.93	2637.18	0.4827	
0.85	195.77	0.85	5235.59	2527.39	0.4827	

Under-excited:

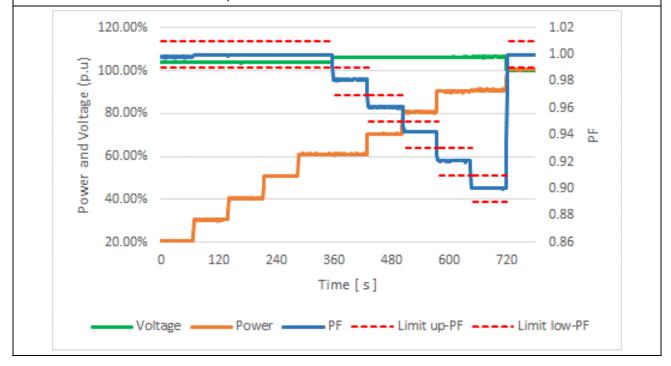
	AC o	utput	Reactive power measured				
Voltage		Measured		Reactive	Value		
setting [V/Vn]	Voltage [V]	[V/Vn]	Active power [W]	power [Var]	[Q/P _D]	Limits	
1.10	253.42	1.10	5461.67	-2641.43	-0.4836	-0.484±0.02	
1.08	248.81	1.08	5441.30	-2635.28	-0.4843	-0.484±0.02	
1.05	241.91	1.05	5403.74	-2608.82	-0.4828	-0.484±0.02	
1.00	230.41	1.00	5426.47	-2602.22	-0.4795	-0.484±0.02	
0.95	218.82	0.95	5463.93	-2586.13	-0.4733		
0.92	210.93	0.92	5949.08	-1143.49	-0.1922	-0.194±0.02	
0.90	207.31	0.90	6026.62	-83.93	-0.0139	±0.02	


4.7.2.3.3 Voltage		Р				
P/P _n [%] Set-point	Vac [V] Set-point	P/P _n [%] measured	Vac[V] Measured	Q [VAr] measured	Q [Var] expected	Δ Q [Var] (≤ ± 5 % Pn)
< 20 %	1.07 V _n	15.95	246.51	-81.17	≈0 (< ± 5 % Pn)	-1.35
< 20 %	1.09 V _n	16.48	250.99	-82.66	≈0 (< ± 5 % Pn)	-1.38
<20 % → 30 %	1.09 Vn	25.85	251.06	-1314.13	-1307.40 (within 10sec)	-0.11
40 %	1.09 Vn	41.07	251.03	-1322.51	-1307.40	-0.25
50 %	1.09 Vn	51.40	251.09	-1326.20	-1307.40	-0.31
60 %	1.09 Vn	61.43	251.07	-1312.31	-1307.40	-0.08
70 %	1.09 Vn	71.71	251.07	-1310.22	-1307.40	-0.05
80 %	1.09 Vn	80.73	251.03	-1327.99	-1307.40	-0.34
90 %	1.09 Vn	91.08	251.19	-1318.83	-1307.40	-0.19
100 %	1.09 Vn	98.72	251.05	-1309.37	-1307.40	-0.03
100 %	1.10 Vn	90.41	253.35	-2693.60	-2614.80	-1.31
100 % →10 %	1.10 Vn	10.37	253.39	-2690.70	-2614.80	-1.26
10 % → ≤ 5 %	1.10 Vn	5.05	253.35	-63.15	≈0 (< ± 5 % Pn)	-1.05

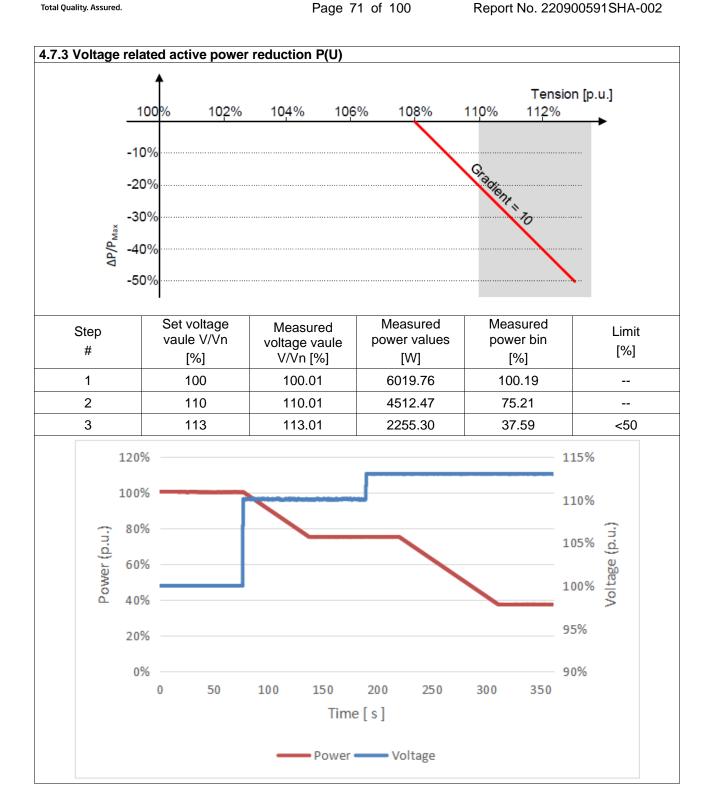
Remark: $V1_s = 1.08 \text{ V}_n$. $V2_s = 1.1 \text{ V}_n$. $V1i = 0.92 \text{ V}_n$. $V2_i = 0.9 \text{ V}_n$. lock-in value $P=0.2P_n$. lock-out value $P=0.05P_n$.

P/P _n [%] Set-point	Vac [V] Set-point	P/P _n [%] measured	Vac [V] Measured	Q [VAr] measured	Q [Var] expected	Δ Q [Var] (≤±5 %P _n)
< 20 %	0.93 Vn	15.07	213.92	60.01	≈0 (< ± 5 % Pn)	1.00
< 20 %	0.91 Vn	15.11	209.34	62.36	≈0 (< ± 5 % Pn)	1.04
<20 % → 30 %	0.91 Vn	25.65	209.24	1221.68	1307.40 (within 10sec)	-1.43
40 %	0.91 Vn	40.57	209.40	1274.79	1307.40	-0.54
50 %	0.91 Vn	50.08	209.35	1288.11	1307.40	-0.32
60 %	0.91 Vn	60.66	209.33	1292.69	1307.40	-0.25
70 %	0.91 Vn	71.00	209.33	1269.33	1307.40	-0.63
80 %	0.91 Vn	80.11	209.39	1277.21	1307.40	-0.50
90 %	0.91 Vn	90.53	209.38	1295.42	1307.40	-0.20
100 %	0.91 Vn	98.19	209.39	1303.32	1307.40	-0.07
100 %	0.90 Vn	91.61	206.68	2604.76	2614.80	-0.17
100 % →10 %	0.90 Vn	11.15	206.42	2611.23	2614.80	-0.06
10 % → ≤ 5 %	0.91 Vn	4.79	206.56	81.75	≈0 (< ± 5 % Pn)	1.36

Remark: $V1_s = 1.08 \text{ V}_n$. $V2_s = 1.1 \text{ V}_n$. $V1i = 0.92 \text{ V}_n$. $V2_i = 0.9 \text{ V}_n$. lock-in value $P=0.2P_n$. lock-out value $P=0.05P_n$



47	234	Power	related	control	modes
4.1.	∠+	FUWEI	TEIALEU	COHILION	IIIUUES


P Desired (%Sn)	P measured (%Sn)	Q measured (Var)	Voltage Desired (%Un)	Voltage Measured (%Un)	Power Factor desired (cos φ)	Power Factor measured (cos φ)	△Q (%S _{Max})	Limit (%S _{Max})
20%	20.60	-70.19	<105%	103.87	1.0000	0.9983	-1.17	±2
30%	30.49	-63.42	<105%	103.83	1.0000	0.9994	-1.06	±2
40%	40.45	-75.38	<105%	103.73	1.0000	0.9995	-1.26	±2
50%	50.64	-85.43	<105%	103.78	1.0000	0.9996	-1.42	±2
60%	61.04	-98.54	<105%	104.01	1.0000	0.9996	-1.64	±2
60%	61.07	-715.69	>105%	106.01	0.9800	0.9814	0.26	±2
70%	70.50	-1216.04	>105%	106.13	0.9600	0.9610	0.15	±2
80%	80.70	-1711.15	>105%	106.21	0.9400	0.9428	0.52	±2
90%	90.37	-2295.71	>105%	106.34	0.9200	0.9208	0.08	±2
100%	90.94	-2639.49	>105%	106.42	0.9000	0.9001	-0.42	±2
100%	100.43	-94.56	<100%	100.10	1.0000	0.9998	-1.58	±2

Remark: Tested at lock-in voltage 1.05 Vn and lock-out voltage Vn.

The Lock-in value is adjustable between Vn and 1.1Vn in 0.01V steps, the Lock-out value is adjustable between 0.9Vn and Vn in 0.01V steps

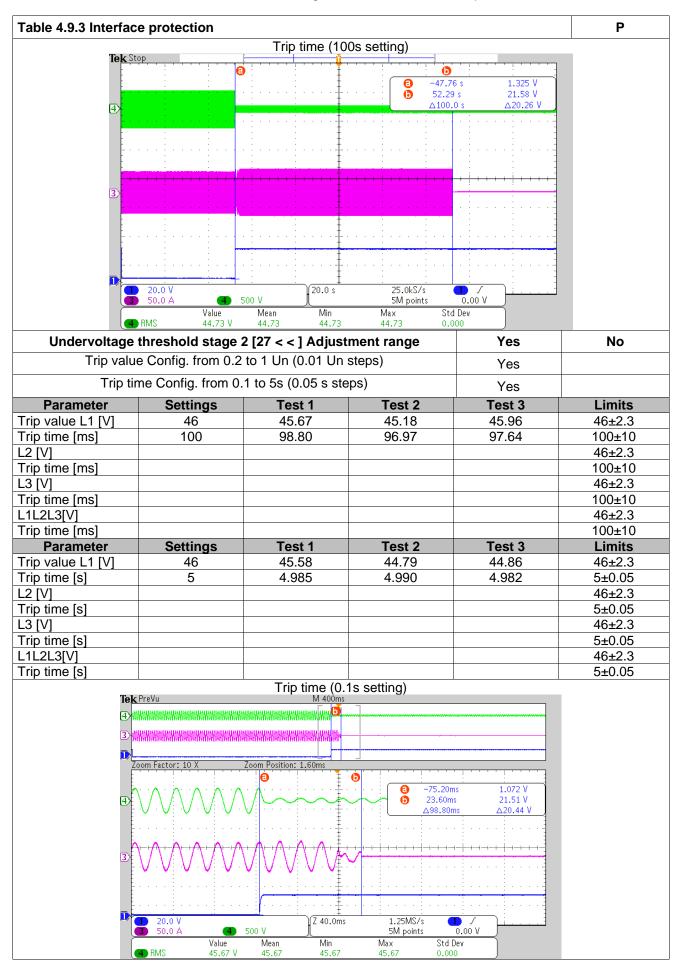
4.8 EMC

TABLE: F	lick								Р	
Model: A	F6k-SL	-0								
Valu	ue	Dc	(%)	Dmax (%) d	(t) – 500m	าร	P _{st}	Plt	
Lim	nit	3.3	30	4.00		3.30%		1.00	0.65	
- .	L1	0.3	38	0.70		0		0.19	0.17	
Test value	L2									
	L3	Flicker Mo		 Uover:= = = =				OGAWA 🔷		
		Element Volt Rai Un (U3 Freq(U3) Limit No. 1 2 3 4 5 6 7 8 9 10 11 12 Result	nge 300V/9) 230.19	92 V	Element3 Jud	9ement: Pass gement: Pass gement: Pass Pst 1.00 0.18 Pass 0.16 Pass 0.18 Pass 0.18 Pass 0.19 Pass 0.18 Pass 0.17 Pass 0.15 Pass 0.15 Pass Pass				
		Update 360	00		L1 phase					

TABLE: F	lick								Р
Model: A	F1k-SL	-0							,
Valu	ue	Dc	(%)	Dmax (%) d	(t) – 500m	ıs	P _{st}	Plt
Lim	nit	3.3	30	4.00		3.30%		1.00	0.65
_	L1	0.3	24	0.71		0		0.19	0.17
Test value	L2								
	L3								
		Flicker Mo	ode	lover:= = = =	F1í	cker:Complet		OGAWA 💠	
		Element Volt Ran Un (U3) Freq(U3) Limit No. 1 2 3 4 5 6 7 8 9 10 11 12 Result	230.6	07 V 15 Hz dmax[x] 4.00 0.53 Pass 0.71 Pass 0.51 Pass 0.56 Pass 0.57 Pass 0.52 Pass 0.54 Pass 0.51 Pass 0.54 Pass 0.53 Pass 0.55 Pass		Pst 1.00			
		Update 360	00		L1 phase	- 5 11	.11		

Page 74 of 100

4.8	Table: Harmonic cur	AF6k-SL-0						
Hamonics		Measured Value (%)						
order n	33%	66%	100%	61000-3-12 (%)				
2	0.28	0.29	0.33	8%				
3	0.83	0.93	1.41	21.6%				
4	0.04	0.07	0.09	4%				
5	0.50	0.53	0.62	10.7%				
6	0.04	0.02	0.02	2.67%				
7	0.43	0.49	0.59	7.2%				
8	0.05	0.02	0.02	2%				
9	0.34	0.41	0.46	3.8%				
10	0.03	0.03	0.03	1.6%				
11	0.19	0.29	0.34	3.1%				
12	0.05	0.02	0.02	1.33%				
13	0.17	0.24	0.28	2%				
14	0.05	0.02	0.02	N/A				
15	0.14	0.16	0.19	N/A				
16	0.04	0.02	0.03	N/A				
17	0.11	0.15	0.15	N/A				
18	0.04	0.03	0.02	N/A				
19	0.06	0.11	0.10	N/A				
20	0.02	0.03	0.02	N/A				
21	0.05	0.08	0.07	N/A				
22	0.02	0.03	0.02	N/A				
23	0.03	0.06	0.05	N/A				
24	0.02	0.03	0.03	N/A				
25	0.02	0.05	0.06	N/A				
26	0.02	0.02	0.02	N/A				
27	0.03	0.03	0.04	N/A				
28	0.01	0.02	0.02	N/A				
29	0.02	0.04	0.04	N/A				
30	0.01	0.02	0.03	N/A				
31	0.02	0.04	0.04	N/A				
32	0.02	0.02	0.02	N/A				
33	0.02	0.03	0.02	N/A				
34	0.01	0.02	0.02	N/A				
35	0.02	0.02	0.02	N/A				
36	0.02	0.02	0.03	N/A				
37	0.01	0.02	0.02	N/A				
38	0.01	0.02	0.02	N/A				
39	0.01	0.02	0.03	N/A				
40	0.01	0.01	0.02	N/A				
THD	1.17	1.38	1.84	13%				
PWHD	0.95	1.30	1.34	22%				


Page 75 of 100

Hamonics order n 33% 66% 100% 61000-3 2 0.083 0.089 0.101 1 3 0.266 0.242 0.246 2 4 0.028 0.025 0.028 0 5 0.132 0.134 0.139 1 6 0.021 0.012 0.007 0 7 0.093 0.116 0.118 0 8 0.009 0.012 0.005 0 9 0.038 0.090 0.097 0 10 0.009 0.007 0.005 0 11 0.023 0.054 0.074 0 12 0.006 0.010 0.011 0 13 0.009 0.047 0.065 0 14 0.009 0.015 0.012 0 15 0.018 0.040 0.045 0 16 0.007 0.011 0.009 0 <	T	able: Harmonic curre	nt emissions		AF1k-SL-0
order n 33% 66% 100% 61000-3 2 0.083 0.089 0.101 1 3 0.266 0.242 0.246 2 4 0.028 0.025 0.028 0 5 0.132 0.134 0.139 1 6 0.021 0.012 0.007 0 7 0.093 0.116 0.118 0 8 0.009 0.012 0.005 0 9 0.038 0.090 0.097 0 10 0.009 0.007 0.005 0 11 0.023 0.054 0.074 0 12 0.006 0.010 0.011 0 13 0.009 0.047 0.065 0 14 0.009 0.047 0.065 0 14 0.009 0.015 0.012 0 15 0.018 0.040 0.045 0			Limit in BS EN		
2 0.083 0.089 0.101 1 3 0.266 0.242 0.246 2 4 0.028 0.025 0.028 2 5 0.132 0.134 0.139 1 6 0.021 0.012 0.007 0 7 0.093 0.116 0.118 0 8 0.009 0.012 0.005 0 9 0.038 0.090 0.097 0 10 0.009 0.007 0.005 0 11 0.023 0.054 0.074 0 12 0.006 0.010 0.011 0 13 0.009 0.047 0.065 0 14 0.009 0.047 0.065 0 14 0.009 0.015 0.012 0 15 0.018 0.040 0.045 0 16 0.007 0.011 0.009 0 <td< th=""><th></th><th>33%</th><th></th><th></th><th>61000-3-2 in Amps</th></td<>		33%			61000-3-2 in Amps
4 0.028 0.025 0.028 0 5 0.132 0.134 0.139 1 6 0.021 0.012 0.007 0 7 0.093 0.116 0.118 0 8 0.009 0.012 0.005 0 9 0.038 0.090 0.097 0 10 0.009 0.007 0.005 0 11 0.023 0.054 0.074 0 12 0.006 0.010 0.011 0 13 0.009 0.047 0.065 0 14 0.009 0.047 0.065 0 14 0.009 0.015 0.012 0 15 0.018 0.040 0.045 0 16 0.007 0.011 0.009 0 17 0.022 0.030 0.034 0 18 0.009 0.012 0.008 0 <	2		0.089	0.101	1.080
5 0.132 0.134 0.139 1 6 0.021 0.012 0.007 0 7 0.093 0.116 0.118 0 8 0.009 0.012 0.005 0 9 0.038 0.090 0.097 0 10 0.009 0.007 0.005 0 11 0.023 0.054 0.074 0 12 0.006 0.010 0.011 0 13 0.009 0.047 0.065 0 14 0.009 0.015 0.012 0 15 0.018 0.040 0.045 0 16 0.007 0.011 0.009 0 17 0.022 0.030 0.034 0 18 0.009 0.012 0.008 0 19 0.019 0.016 0.021 0 20 0.005 0.003 0.004 0	3	0.266	0.242	0.246	2.300
5 0.132 0.134 0.139 1 6 0.021 0.012 0.007 0 7 0.093 0.116 0.118 0 8 0.009 0.012 0.005 0 9 0.038 0.090 0.097 0 10 0.009 0.007 0.005 0 11 0.023 0.054 0.074 0 12 0.006 0.010 0.011 0 13 0.009 0.047 0.065 0 14 0.009 0.015 0.012 0 15 0.018 0.040 0.045 0 16 0.007 0.011 0.009 0 17 0.022 0.030 0.034 0 18 0.009 0.012 0.008 0 19 0.019 0.016 0.021 0 20 0.005 0.003 0.004 0					0.430
6 0.021 0.012 0.007 0 7 0.093 0.116 0.118 0 8 0.009 0.012 0.005 0 9 0.038 0.090 0.097 0 10 0.009 0.007 0.005 0 11 0.023 0.054 0.074 0 12 0.006 0.010 0.011 0 13 0.009 0.047 0.065 0 14 0.009 0.015 0.012 0 15 0.018 0.040 0.045 0 16 0.007 0.011 0.009 0 17 0.022 0.030 0.034 0 18 0.009 0.012 0.008 0 19 0.019 0.016 0.021 0 20 0.005 0.003 0.004 0 21 0.016 0.012 0.020 0					1.140
7 0.093 0.116 0.118 0 8 0.009 0.012 0.005 0 9 0.038 0.090 0.097 0 10 0.009 0.007 0.005 0 11 0.023 0.054 0.074 0 12 0.006 0.010 0.011 0 13 0.009 0.047 0.065 0 14 0.009 0.015 0.012 0 14 0.009 0.015 0.012 0 14 0.009 0.015 0.012 0 15 0.018 0.040 0.045 0 16 0.007 0.011 0.009 0 17 0.022 0.030 0.034 0 18 0.009 0.012 0.008 0 20 0.005 0.003 0.004 0 21 0.016 0.012 0.021 0					0.300
9 0.038 0.090 0.097 0 10 0.009 0.007 0.005 0 11 0.023 0.054 0.074 0 12 0.006 0.010 0.011 0 13 0.009 0.047 0.065 0 14 0.009 0.015 0.012 0 15 0.018 0.040 0.045 0 16 0.007 0.011 0.009 0 17 0.022 0.030 0.034 0 18 0.009 0.012 0.008 0 19 0.019 0.016 0.021 0 20 0.005 0.003 0.004 0 21 0.016 0.012 0.020 0 22 0.005 0.003 0.004 0 21 0.016 0.012 0.020 0 22 0.005 0.004 0.007 0			0.116	0.118	0.770
9 0.038 0.090 0.097 0 10 0.009 0.007 0.005 0 11 0.023 0.054 0.074 0 12 0.006 0.010 0.011 0 13 0.009 0.047 0.065 0 14 0.009 0.015 0.012 0 15 0.018 0.040 0.045 0 16 0.007 0.011 0.009 0 17 0.022 0.030 0.034 0 18 0.009 0.012 0.008 0 19 0.019 0.016 0.021 0 20 0.005 0.003 0.004 0 21 0.016 0.012 0.020 0 22 0.005 0.003 0.004 0 21 0.016 0.012 0.020 0 22 0.005 0.004 0.007 0	8	0.009	0.012	0.005	0.230
11 0.023 0.054 0.074 0 12 0.006 0.010 0.011 0 13 0.009 0.047 0.065 0 14 0.009 0.015 0.012 0 15 0.018 0.040 0.045 0 16 0.007 0.011 0.009 0 17 0.022 0.030 0.034 0 18 0.009 0.012 0.008 0 19 0.019 0.016 0.021 0 20 0.005 0.003 0.004 0 21 0.016 0.012 0.020 0 22 0.005 0.004 0.007 0 23 0.014 0.010 0.016 0 24 0.006 0.003 0.010 0 24 0.006 0.003 0.016 0 25 0.005 0.005 0.016 0			0.090		0.400
12 0.006 0.010 0.011 0 13 0.009 0.047 0.065 0 14 0.009 0.015 0.012 0 15 0.018 0.040 0.045 0 16 0.007 0.011 0.009 0 17 0.022 0.030 0.034 0 18 0.009 0.012 0.008 0 19 0.019 0.016 0.021 0 20 0.005 0.003 0.004 0 21 0.016 0.012 0.020 0 22 0.005 0.004 0.007 0 23 0.014 0.010 0.016 0 24 0.006 0.003 0.010 0 24 0.006 0.003 0.016 0 25 0.005 0.005 0.016 0 26 0.004 0.003 0.007 0	10	0.009	0.007	0.005	0.184
13 0.009 0.047 0.065 0 14 0.009 0.015 0.012 0 15 0.018 0.040 0.045 0 16 0.007 0.011 0.009 0 17 0.022 0.030 0.034 0 18 0.009 0.012 0.008 0 19 0.019 0.016 0.021 0 20 0.005 0.003 0.004 0 21 0.016 0.012 0.020 0 22 0.005 0.004 0.007 0 23 0.014 0.010 0.016 0 24 0.006 0.003 0.010 0 25 0.005 0.005 0.016 0 26 0.004 0.003 0.007 0 27 0.008 0.007 0.008 0 29 0.006 0.005 0.007 0	11	0.023	0.054	0.074	0.330
14 0.009 0.015 0.012 0 15 0.018 0.040 0.045 0 16 0.007 0.011 0.009 0 17 0.022 0.030 0.034 0 18 0.009 0.012 0.008 0 19 0.019 0.016 0.021 0 20 0.005 0.003 0.004 0 21 0.016 0.012 0.020 0 22 0.005 0.004 0.007 0 23 0.014 0.010 0.016 0 24 0.006 0.003 0.010 0 24 0.006 0.003 0.010 0 26 0.004 0.003 0.007 0 27 0.008 0.007 0.008 0 28 0.004 0.003 0.003 0 29 0.006 0.005 0.007 0	12	0.006	0.010	0.011	0.153
14 0.009 0.015 0.012 0 15 0.018 0.040 0.045 0 16 0.007 0.011 0.009 0 17 0.022 0.030 0.034 0 18 0.009 0.012 0.008 0 19 0.019 0.016 0.021 0 20 0.005 0.003 0.004 0 21 0.016 0.012 0.020 0 22 0.005 0.004 0.007 0 23 0.014 0.010 0.016 0 24 0.006 0.003 0.010 0 24 0.006 0.003 0.010 0 26 0.004 0.003 0.007 0 27 0.008 0.007 0.008 0 28 0.004 0.003 0.003 0 29 0.006 0.005 0.007 0					0.210
16 0.007 0.011 0.009 0 17 0.022 0.030 0.034 0 18 0.009 0.012 0.008 0 19 0.019 0.016 0.021 0 20 0.005 0.003 0.004 0 21 0.016 0.012 0.020 0 22 0.005 0.004 0.007 0 23 0.014 0.010 0.016 0 24 0.006 0.003 0.010 0 25 0.005 0.005 0.016 0 26 0.004 0.003 0.007 0 27 0.008 0.007 0.008 0 28 0.004 0.003 0.003 0.003 29 0.006 0.005 0.003 0.003 31 0.007 0.004 0.006 0 32 0.003 0.004 0.006 0	14		0.015	0.012	0.131
16 0.007 0.011 0.009 0 17 0.022 0.030 0.034 0 18 0.009 0.012 0.008 0 19 0.019 0.016 0.021 0 20 0.005 0.003 0.004 0 21 0.016 0.012 0.020 0 22 0.005 0.004 0.007 0 23 0.014 0.010 0.016 0 24 0.006 0.003 0.010 0 25 0.005 0.005 0.016 0 26 0.004 0.003 0.007 0 27 0.008 0.007 0.008 0 28 0.004 0.003 0.003 0.003 29 0.006 0.005 0.007 0 30 0.005 0.003 0.003 0 31 0.007 0.004 0.006 0	15	0.018	0.040	0.045	0.150
18 0.009 0.012 0.008 0 19 0.019 0.016 0.021 0 20 0.005 0.003 0.004 0 21 0.016 0.012 0.020 0 22 0.005 0.004 0.007 0 23 0.014 0.010 0.016 0 24 0.006 0.003 0.010 0 25 0.005 0.005 0.016 0 26 0.004 0.003 0.007 0 28 0.004 0.003 0.003 0 29 0.006 0.005 0.003 0.007 0 30 0.005 0.003 0.007 0 31 0.007 0.004 0.006 0 32 0.003 0.003 0.004 0 33 0.008 0.003 0.008 0 34 0.003 0.004 0.008 0	16		0.011	0.009	0.115
18 0.009 0.012 0.008 0 19 0.019 0.016 0.021 0 20 0.005 0.003 0.004 0 21 0.016 0.012 0.020 0 22 0.005 0.004 0.007 0 23 0.014 0.010 0.016 0 24 0.006 0.003 0.010 0 25 0.005 0.005 0.016 0 26 0.004 0.003 0.007 0 28 0.004 0.003 0.003 0 29 0.006 0.005 0.007 0 30 0.005 0.003 0.007 0 31 0.007 0.004 0.006 0 32 0.003 0.003 0.004 0 33 0.008 0.003 0.008 0 34 0.003 0.004 0.008 0	17	0.022	0.030	0.034	0.132
19 0.019 0.016 0.021 0 20 0.005 0.003 0.004 0 21 0.016 0.012 0.020 0 22 0.005 0.004 0.007 0 23 0.014 0.010 0.016 0 24 0.006 0.003 0.010 0 25 0.005 0.005 0.016 0 26 0.004 0.003 0.007 0 27 0.008 0.007 0.008 0 28 0.004 0.003 0.003 0 29 0.006 0.005 0.007 0 30 0.005 0.003 0.003 0 31 0.007 0.004 0.006 0 32 0.003 0.003 0.004 0 33 0.008 0.003 0.008 0 34 0.003 0.004 0.008 0	18	0.009		0.008	0.102
20 0.005 0.003 0.004 0 21 0.016 0.012 0.020 0 22 0.005 0.004 0.007 0 23 0.014 0.010 0.016 0 24 0.006 0.003 0.010 0 25 0.005 0.005 0.016 0 26 0.004 0.003 0.007 0.008 27 0.008 0.007 0.008 0 28 0.004 0.003 0.003 0.003 29 0.006 0.005 0.007 0 30 0.005 0.003 0.003 0.003 31 0.007 0.004 0.006 0 32 0.003 0.003 0.004 0 33 0.008 0.003 0.004 0 34 0.003 0.004 0.008 0 35 0.008 0.006 0.007 0	19		0.016		0.118
22 0.005 0.004 0.007 0 23 0.014 0.010 0.016 0 24 0.006 0.003 0.010 0 25 0.005 0.005 0.016 0 26 0.004 0.003 0.007 0.008 28 0.004 0.003 0.003 0.003 29 0.006 0.005 0.007 0 30 0.005 0.003 0.003 0 31 0.007 0.004 0.006 0 32 0.003 0.003 0.004 0 33 0.008 0.003 0.004 0 34 0.003 0.003 0.004 0 35 0.008 0.004 0.008 0 36 0.005 0.006 0.007 0 37 0.007 0.003 0.004 0 38 0.002 0.003 0.004 0 <td>20</td> <td>0.005</td> <td></td> <td>0.004</td> <td>0.092</td>	20	0.005		0.004	0.092
22 0.005 0.004 0.007 0 23 0.014 0.010 0.016 0 24 0.006 0.003 0.010 0 25 0.005 0.005 0.016 0 26 0.004 0.003 0.007 0 27 0.008 0.007 0.008 0 28 0.004 0.003 0.003 0 29 0.006 0.005 0.007 0 30 0.005 0.003 0.003 0 31 0.007 0.004 0.006 0 32 0.003 0.003 0.004 0 33 0.008 0.003 0.008 0 34 0.003 0.004 0.008 0 35 0.008 0.004 0.008 0 36 0.005 0.006 0.007 0 37 0.007 0.003 0.004 0	21	0.016	0.012	0.020	0.107
24 0.006 0.003 0.010 0 25 0.005 0.005 0.016 0 26 0.004 0.003 0.007 0 27 0.008 0.007 0.008 0 28 0.004 0.003 0.003 0 29 0.006 0.005 0.007 0 30 0.005 0.003 0.003 0 31 0.007 0.004 0.006 0 32 0.003 0.003 0.004 0 33 0.008 0.003 0.008 0 34 0.003 0.002 0.004 0 35 0.008 0.004 0.008 0 36 0.005 0.006 0.007 0 37 0.007 0.003 0.003 0.004 0 38 0.002 0.003 0.004 0 0	22		0.004		0.084
24 0.006 0.003 0.010 0 25 0.005 0.005 0.016 0 26 0.004 0.003 0.007 0 27 0.008 0.007 0.008 0 28 0.004 0.003 0.003 0 29 0.006 0.005 0.003 0.003 0 30 0.005 0.003 0.003 0 0 31 0.007 0.004 0.006 0 0 32 0.003 0.003 0.004 0 0 33 0.008 0.003 0.008 0 0 34 0.003 0.002 0.004 0 0 35 0.008 0.004 0.008 0 0 36 0.005 0.006 0.007 0 0 37 0.007 0.003 0.003 0.004 0 38 0.002 0.003	23	0.014	0.010	0.016	0.098
26 0.004 0.003 0.007 0.008 27 0.008 0.007 0.008 0.008 28 0.004 0.003 0.003 0.003 29 0.006 0.005 0.007 0.003 30 0.005 0.003 0.003 0.003 31 0.007 0.004 0.006 0.004 32 0.003 0.003 0.004 0.008 34 0.003 0.002 0.004 0.008 35 0.008 0.004 0.008 0.007 36 0.005 0.006 0.007 0.007 37 0.007 0.003 0.003 0.004 0.007 38 0.002 0.003 0.004 0.004 0.004	24	0.006			0.077
26 0.004 0.003 0.007 0.008 27 0.008 0.007 0.008 0.008 28 0.004 0.003 0.003 0.003 29 0.006 0.005 0.003 0.003 0.003 31 0.007 0.004 0.006 0.003 32 0.003 0.003 0.004 0.004 33 0.008 0.003 0.008 0.008 34 0.003 0.002 0.004 0.008 35 0.008 0.004 0.008 0.007 36 0.005 0.006 0.007 0.007 37 0.007 0.003 0.004 0.007 38 0.002 0.003 0.004 0.004	25	0.005	0.005	0.016	0.090
28 0.004 0.003 0.003 0.003 29 0.006 0.005 0.007 0.007 30 0.005 0.003 0.003 0.003 31 0.007 0.004 0.006 0.00 32 0.003 0.003 0.004 0.008 34 0.003 0.002 0.004 0.008 35 0.008 0.004 0.008 0.007 36 0.005 0.006 0.007 0.007 37 0.007 0.003 0.007 0.003 38 0.002 0.003 0.004 0.004	26				0.071
28 0.004 0.003 0.003 0 29 0.006 0.005 0.007 0 30 0.005 0.003 0.003 0 31 0.007 0.004 0.006 0 32 0.003 0.003 0.004 0 33 0.008 0.003 0.008 0 34 0.003 0.002 0.004 0 35 0.008 0.004 0.008 0 36 0.005 0.006 0.007 0 37 0.007 0.003 0.007 0 38 0.002 0.003 0.004 0	27	0.008	0.007	0.008	0.083
30 0.005 0.003 0.003 0.003 31 0.007 0.004 0.006 0.003 32 0.003 0.003 0.004 0.003 33 0.008 0.003 0.008 0.008 34 0.003 0.002 0.004 0.004 35 0.008 0.004 0.008 0.007 36 0.005 0.006 0.007 0.007 37 0.007 0.003 0.007 0.003 38 0.002 0.003 0.004 0.004	28				0.066
31 0.007 0.004 0.006 0 32 0.003 0.003 0.004 0 33 0.008 0.003 0.008 0 34 0.003 0.002 0.004 0 35 0.008 0.004 0.008 0 36 0.005 0.006 0.007 0 37 0.007 0.003 0.007 0 38 0.002 0.003 0.004 0	29	0.006	0.005	0.007	0.078
32 0.003 0.003 0.004 0 33 0.008 0.003 0.008 0 34 0.003 0.002 0.004 0 35 0.008 0.004 0.008 0 36 0.005 0.006 0.007 0 37 0.007 0.003 0.007 0 38 0.002 0.003 0.004 0	30	0.005	0.003	0.003	0.061
33 0.008 0.003 0.008 0.003 34 0.003 0.002 0.004 0.004 35 0.008 0.004 0.008 0.007 36 0.005 0.006 0.007 0.007 37 0.007 0.003 0.007 0.007 38 0.002 0.003 0.004 0.004	31		0.004	0.006	0.073
33 0.008 0.003 0.008 0.003 34 0.003 0.002 0.004 0.004 35 0.008 0.004 0.008 0.007 36 0.005 0.006 0.007 0.007 37 0.007 0.003 0.007 0.007 38 0.002 0.003 0.004 0.004					0.058
34 0.003 0.002 0.004 0 35 0.008 0.004 0.008 0 36 0.005 0.006 0.007 0 37 0.007 0.003 0.007 0 38 0.002 0.003 0.004 0					0.068
35 0.008 0.004 0.008 0 36 0.005 0.006 0.007 0 37 0.007 0.003 0.007 0 38 0.002 0.003 0.004 0					0.054
36 0.005 0.006 0.007 0 37 0.007 0.003 0.007 0 38 0.002 0.003 0.004 0					0.064
37 0.007 0.003 0.007 0.003 38 0.002 0.003 0.004 0.004	36				0.051
38 0.002 0.003 0.004 0			0.003		0.061
					0.048
					0.058
40 0.003 0.003 0.004 0					0.046
THD 2.402 2.538 2.778					5%

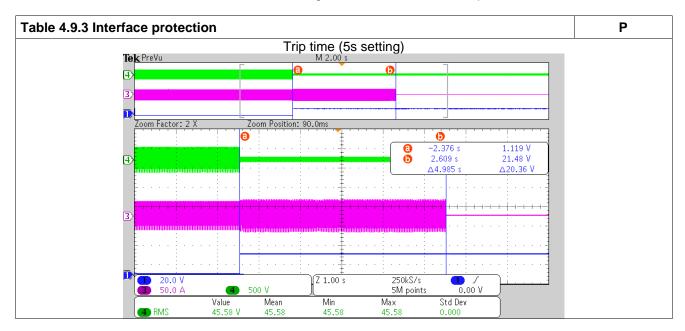


Table 4.9.3 Interface protection						
Undervoltage threshold stage 1 [27 <] Adjustment range Yes						
Trip val	ue Config. from 0.2	Yes				
Trip ti	me Config. from 0.	1 to 100 s (0.1 s	steps)	Yes		
Parameter	Settings	Test 1	Test 2	Test 3	Limits	
Trip value L1[V]	46	45.64	45.84	45.31	46±2.3	
Trip time [ms]	100	98.40	99.20	99.40	100±10	
L2 [V]					46±2.3	
Trip time [ms]					100±10	
L3 [V]					46±2.3	
Trip time [ms]					100±10	
L1L2L3[V]					46±2.3	
Trip time [ms]					100±10	
Parameter	Settings	Test 1	Test 2	Test 3	Limits	
Trip value L1[V]	46	44.73	45.46	45.22	46±2.3	
Trip time [s]	100	100.00	99.98	99.99	100±10	
L2 [V]					46±2.3	
Trip time [s]					100±10	
L3 [V]					46±2.3	
Trip time [s]					100±10	
L1L2L3[V]					46±2.3	
Trip time [s]					100±10	
mp umo [o]		Trin time (0.1s setting)		100210	
Tek	PreVu	M 400				
4	alkalkalkalkalkalkalkalkalkalkalkalkalka	YANYANYANYANYANYANYANYANYANYA	***************************************			
3)W	ANTIANTIANTIANTIANTIANTIANTIANTIANTIANTI					
3 M	IKUAKUAKUAKUAKUAKUAKUAKUAKUAKUAKUAKUAKUA	TYRTYRTYRTYRTYRTYRTYRTYRTYR				
<u>D</u> -	oom Factor: 10 X	Zoom Position: -34.8ms				
E.	oom ractor. 10 A	20011 FOSICION34.61115	<u> </u>	····		
	$A \cdot A \cdot$	∧ ! √ · · · ! · · · · ·	a −10	03.6ms 1.116 V		
4	(A/A)/A/A/A/A			.200ms 21.45 V		
		· · · · · · · · · · · · · · · · · · ·	Δ9	8.40ms △20.34 V		
	AHAHAHAH	Λ i Λ i Λ i Λ i Λ i Λ i				
3	/	/ \\/ \\/ \\/ \\/ \\	Y			
-						
-		<u></u>	‡ . ! ! .			
I.	1 20.0 V	Z 40.0				
	3 50.0 A 4	500 V	5M points	0.00 V		
	Value 4 RMS 45.64 V	Mean Min 45.64 45.6	Max 4 45.64	Std Dev 0.000		

Table 4.9.3 Interface	ce protection				Р
Overvoltage	e threshold stage	e 1 [59 >] Adjustm	ent range	Yes	No
		to 1.2 Un (0.01 Ur		Yes	
Trip tir	me Config. from 0	0.1 to 100s (0.1 s st	eps)	Yes	
Parameter	Settings	Test 1	Test 2	Test 3	Limits
Trip value L1 [V]	276	276.3	276.4	277.3	276±2.3
Trip time [ms]	100	98.00	97.85	97.23	100±10
_2 [V]					
Trip time [ms]					
_3 [V]					
Trip time [ms]					
L1L2L3[V]					
Trip time [ms] Parameter	Settings	Test 1	Test 2	Test 3	Limits
Trip value L1 [V]	276	277.3	276.5	277.4	276±2.3
Trip time [s]	100	100.00	100.00	100.00	100±10
_2 [V]	100	100.00	100.00	100.00	100±10
Trip time [s]					
L3 [V]					
Trip time [s]					
L1L2L3[V]					
Trip time [s]		-	4		
Tek F	^p reVu	Trip time (0.	1s setting)		
13.WM	Alandarandarandarandarandarandarandaranda				
			***************************************	ATTACTIACTIACTIACTIACTIACTIACTIACTIACTIA	
	HOHOHOHOHOHOHOHOHOHOHO	ALANALAN KANANAN ANALAN KANANAN ANALAN KANANAN ANALAN KANANAN			
70	om Factor: 4 X	Zoom Position: -111ms		 	
	: :	: <u>0</u> ‡	5		
	^^^^^	ÆAAAAAAAAAAAAA	↑↑↑↑↑ 3 -144. 6 -46.0		
4 ₹ √	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\V\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	√√√√√ ∆98.0		
<u> </u>					
A		<u>ᡮ</u> <u>ᡑݕݕݕݕݕݕݕݕݕ</u>			
3	AMMAMAMAM		///		
_	****	, , , , , , , , , , , , ₁			
		· · : · · · · : · · · · ‡			
	- i i i	 			
	20.0 V	Z 100ms	1.25MS/s	Town V	
	50.0 A 4 Value	500 V	5M points Max St	0.00 V	
	3) 50.0 A (4)	500 V	5M points Max St 276.3 0.	0.00 V	
	50.0 A Value RMS 276.3 V	500 V	5M points Max St 276.3 0.	0.00 V	
	50.0 A Value RMS 276.3 V	500 V	5M points Max St 276.3 0.	0.00 V	
	50.0 A Value RMS 276.3 V	Mean Min 276.3 276.3 Trip time (10	5M points Max St 276.3 0. 00s setting) 3 -35.	0.00 V d Dev 0000	
Tek Pr	50.0 A Value RMS 276.3 V	Mean Min 276.3 276.3 Trip time (10	5M points Max St 276.3 0. 00s setting)	0.00 V d Dev 0000 000 s 21.91 V 02 s 1.297 V	
	50.0 A Value RMS 276.3 V	Mean Min 276.3 276.3 Trip time (10	5M points Max St 276.3 0. 00s setting) 3 -35. 5 65.	0.00 V d Dev 0000 000 s 21.91 V 02 s 1.297 V	
Tek Pr	50.0 A Value RMS 276.3 V	Mean Min 276.3 276.3 Trip time (10	5M points Max St 276.3 0. 00s setting) 3 -35. 5 65.	0.00 V d Dev 0000 000 s 21.91 V 02 s 1.297 V	
Tek Pr	50.0 A Value RMS 276.3 V	Mean Min 276.3 276.3 Trip time (10	5M points Max St 276.3 0. 00s setting) 3 -35. 5 65.	0.00 V d Dev 0000 000 s 21.91 V 02 s 1.297 V	
Tek Pr	50.0 A Value RMS 276.3 V	Mean Min 276.3 276.3 Trip time (10	5M points Max St 276.3 0. 00s setting) 3 -35. 5 65.	0.00 V d Dev 0000 000 s 21.91 V 02 s 1.297 V	
Tek Pr	50.0 A Value RMS 276.3 V	Mean Min 276.3 276.3 Trip time (10	5M points Max St 276.3 0. 00s setting) 3 -35. 5 65.	0.00 V d Dev 0000 000 s 21.91 V 02 s 1.297 V	
Tek Pr	50.0 A Value RMS 276.3 V	Mean Min 276.3 276.3 Trip time (10	5M points Max St 276.3 0. 00s setting) 3 -35. 5 65.	0.00 V d Dev 0000 000 s 21.91 V 02 s 1.297 V	
Tek Pr	50.0 A Value RMS 276.3 V	Mean Min 276.3 276.3 Trip time (10	5M points Max St 276.3 0. 00s setting) 3 -35. 5 65.	0.00 V d Dev 0000 000 s 21.91 V 02 s 1.297 V	
Tek Pr	50.0 A Value RMS 276.3 V	Mean Min 276.3 276.3 Trip time (10	5M points Max St 276.3 0. 00s setting) 3 -35. 5 65.	0.00 V d Dev 0000 000 s 21.91 V 02 s 1.297 V	
Tek Pr	50.0 A Value RMS 276.3 V	Mean Min 276.3 276.3 Trip time (10	5M points Max St 276.3 0. 00s setting) 3 -35. 5 65.	0.00 V d Dev 0000 000 s 21.91 V 02 s 1.297 V	
Tek Pr	50.0 A Value RMS 276.3 V	Mean Min 276.3 276.3 Trip time (10	5M points Max St 276.3 0. 00s setting) 3 -35. 5 65.	0.00 V d Dev 0000 000 s 21.91 V 02 s 1.297 V	
Tek Pr	50.0 A Value RMS 276.3 V	Mean Min 276.3 276.3 Trip time (10	5M points Max St 276.3 0. 00s setting) 3 -35. 5 65.	0.00 V d Dev 0000 000 s 21.91 V 02 s 1.297 V	
Tek Pr	3 50.0 A Value 276.3 V VeVu	Mean 276.3 Trip time (10	5M points Max 276.3 0. Oos setting) 3 -35. 65. △100 25.0kS/s 5M points	0.00 V d Dev 0000 000 s 21.91 V 02 s 1.297 V 0.0 s Δ20.62 V	

Table 4.9.3 Interfac	e protection				Р
Overvoltage t	hreshold stage 2	! [59 > >] Adjusti	ment range	Yes	No
Trip value Config. from 1.0 to 1.3 Un (0.01 Un steps)					
•	=	.1 to 5s (0.05s ste		Yes	
Parameter	Settings	Test 1	Test 2	Test 3	Limits
Trip value L1 [V]	299	299.8	299.60	299.20	299±2.3
Trip time [ms]	100	99.32	97.64	98.27	299±2.3 100±10
L2 [V]	100	55.52	57.04	55.21	100±10
Trip time [ms]					
L3 [V]					
Trip time [ms]					
L1L2L3[V]					
Trip time [ms]					
Parameter	Settings	Test 1	Test 2	Test 3	Limits
Trip value L1 [V]	299	300.7	300.3	299.8	299±2.3
Trip time [s]	5	4.985	4.992	4.996	5±0.05
L2 [V]					
Trip time [s]					
L3 [V]					
Trip time [ms]					
L1L2L3[V]					
Trip time [s]		Trip time (0.	1s setting)		
Te <u>k</u> Pr	eVu	M 400ms			
4	YYYDYYYDYYYDYYYDYYDDYYDDYYDDYYDDYYDDYY	AKOHAOHAONA DHOHAOHAOHAONAON	KAROKADKADKADKADKADKADKADKADKADKADKADKADKADK	HARAKAKAKAKAKAKAKAKAKA	
	Hadindinaharakan				
		PERSONAL PROPERTY OF PROPERTY			
D		Zoom Position: -18.0ms			
D			6		
D			AAAA (a -75.0		
D				2ms 21.56 V	
D			-75.0 -75.0 -75.0	2ms 21.56 V	
D		Zoom Position: -18.0ms	3 -75.0 5 24.3 Δ99.3	2ms 21.56 V	
D		Zoom Position: -18.0ms	3 -75.0 5 24.3 Δ99.3	2ms 21.56 V	
D			3 -75.0 5 24.3 Δ99.3	2ms 21.56 V	
D		Zoom Position: -18.0ms	3 -75.0 5 24.3 Δ99.3	2ms 21.56 V	
D		Zoom Position: -18.0ms	3 -75.0 5 24.3 Δ99.3	2ms 21.56 V	
D	m Factor: 4 X	Zoom Position: -18.0ms	3 -75.0 5 24.3; Δ99.3 1.25MS/s	2ms 21.56 V 32ms Δ20.44 V	
Zooi	m Factor: 4 X	Zoom Position: -18.0ms	3 -75.0 3 24.3 Δ99.3 1.25MS/s 5M points	2ms 21.56 V 32ms Δ20.44 V	
3	m Factor: 4 X	Zoom Position: -18.0ms	1.25MS/s 5M points Max St	2ms 21.56 V 32ms Δ20.44 V	
3 3	m Factor: 4 X 1 20.0 V 1 50.0 A 1 Value 299.8 V	Zoom Position: -18.0ms (2 100ms) Mean Min 299.8 Trip time (5	1.25MS/s 5M points Max 299.8 0. 5S setting)	2ms 21.56 V 32ms \(\triangle 20.44 \) V 0.00 V d Dev	
3	m Factor: 4 X 1 20.0 V 1 50.0 A 1 Value 299.8 V	Zoom Position: -18.0ms (2) (3) (4) (5) (7) (7) (8) (8) (8) (9) (9) (10)	1.25MS/s 5M points Max 299.8 0. 5s setting)	2ms 21.56 V 32ms \(\triangle 20.44 \) V 0.00 V d Dev	
3 3	m Factor: 4 X 1 20.0 V 1 50.0 A 1 Value 299.8 V	Zoom Position: -18.0ms (2 100ms) Mean Min 299.8 Trip time (5	1.25MS/s 5M points Max 299.8 0. 5S setting)	2ms 21.56 V 32ms \(\triangle 20.44 \) V 0.00 V d Dev	
3 10 10 10 10 10 10 10 10 10 10 10 10 10	m Factor: 4 X 1 20.0 V 1 50.0 A 1 Value 299.8 V	Zoom Position: -18.0ms (2 100ms) Mean Min 299.8 Trip time (5	1.25MS/s 5M points Max 299.8 0. 5s setting)	2ms 21.56 V 32ms \(\triangle 20.44 \) V 0.00 V d Dev	
Zooi Zooi 3 10 11 3 11 4	m Factor: 4 X 1 20.0 V 1 50.0 A 1 Value 299.8 V	Zoom Position: -18.0ms (Z 100ms) Mean Min 299.8 Trip time (5	1.25MS/s 5M points Max 299.8 0. 5s setting)	2ms 21.56 V 32ms \(\triangle 20.44 \) V 0.00 V d Dev	
3 10 10 10 10 10 10 10 10 10 10	m Factor: 4 X 20.0 V 50.0 A Walue PRMS 299.8 V	Zoom Position: -18.0ms (Z 100ms) Mean Min 299.8 Trip time (5	1.25MS/s 5M points Max 299.8 0. 5s setting)	2ms 21.56 V 32ms \(\triangle 20.44 \) V 0.00 V d Dev	
3 10 10 10 10 10 10 10 10 10 10	m Factor: 4 X 20.0 V 50.0 A Walue PRMS 299.8 V	Zoom Position: -18.0ms Z 100ms X 100ms	1.25MS/s 5M points Max 299.8 0. 5s setting)	2ms 21.56 V 32ms	
7 Zooi	m Factor: 4 X 20.0 V 50.0 A Walue PRMS 299.8 V	Zoom Position: -18.0ms Z 100ms X 100ms	1.25MS/s 5M points Max 299.8 5s setting)	2ms 21.56 V 32ms A20.44 V 0.00 V d Dev 000	
3 10 10 10 10 10 10 10 10 10 10	m Factor: 4 X 20.0 V 50.0 A Walue PRMS 299.8 V	Zoom Position: -18.0ms Z 100ms X 100ms	1.25MS/s 5M points Max 299.8 0. 5s setting)	2ms 21.56 V 32ms	
7 Zooi	m Factor: 4 X 20.0 V 50.0 A Walue PRMS 299.8 V	Zoom Position: -18.0ms Z 100ms X 100ms	1.25MS/s 5M points Max 299.8 0. 5s setting) 1 -75.0 24.3 A.991.3	2ms 21.56 V 32ms	
7 Zooi	m Factor: 4 X 20.0 V 50.0 A Walue PRMS 299.8 V	Zoom Position: -18.0ms Z 100ms X 100ms	1.25MS/s 5M points Max 299.8 0. 5s setting) 1 -75.0 24.3 A.991.3	2ms 21.56 V 32ms	
7 Zooi	m Factor: 4 X 20.0 V 50.0 A Walue PRMS 299.8 V	Zoom Position: -18.0ms Z 100ms X 100ms	1.25MS/s 5M points Max 299.8 0. 5s setting) 1 -75.0 24.3 A.991.3	2ms 21.56 V 32ms	
10 Zooi 2 3 1 1 3 3 1 3 2 4 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	m Factor: 4 X 20.0 V 50.0 A Walue PRMS 299.8 V	Zoom Position: -18.0ms Z 100ms X 100ms	1.25MS/s 5M points Max 299.8 0. 5s setting) 1 -75.0 24.3 A.991.3	2ms 21.56 V 32ms	
10 Zooi 2 3 1 1 3 3 1 3 2 4 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	m Factor: 4 X 20.0 V 50.0 A Walue PRMS 299.8 V	Zoom Position: -18.0ms Z 100ms X 100ms	1.25MS/s 5M points Max 299.8 0. 5s setting) 1 -75.0 24.3 A.991.3	2ms 21.56 V 32ms	
10 Zooi 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	m Factor: 4 X 20.0 V 50.0 A Walue PRMS 299.8 V	Zoom Position: -18.0ms Z 100ms X 100ms	1.25MS/s 5M points Max 299.8 0. 5s setting) 1 -75.0 24.3 A.991.3	2ms 21.56 V 32ms	
10 Zooi 10 Zooi 10 Zooi 11 Zooi 12 Zooi 13 Zooi 14 Zooi 15 Zooi 16 K Pr 4 Zooi 17 Zooi 18 Zooi 18 Zooi 18 Zooi 19 Zooi 10 Zooi 10 Zooi 11 Zooi 12 Zooi 13 Zooi 14 Zooi 15 Zooi 16 Zooi 17 Zooi 18 Zooi	7 Factor: 4 X 20.0 V 50.0 A Walue 299.8 V eVu	Zoom Position: -18.0ms (2 100ms) Mean Min 299.8 Zoom Position: 780ms Zoom Position: 780ms	1.25MS/s 5M points Max St 299.8 0. 5s setting) 5 3 -75.0 1.25MS/s 5M points A4.9	2ms 21.56 V 32ms	
10 Zooi 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	PACTOR: 4 X 20.0 V 50.0 A Walue 299.8 V eVu The Factor: 2 X 20.0 V	Zoom Position: -18.0ms Z 100ms X 100ms	1.25MS/s 24.3; Δ99.3 1.25MS/s 5M points Max St 299.8 0. 5s setting) 1 3 -1.7* 3.24 Δ4.9 250kS/s 5M points	2ms 21.56 V 32ms	

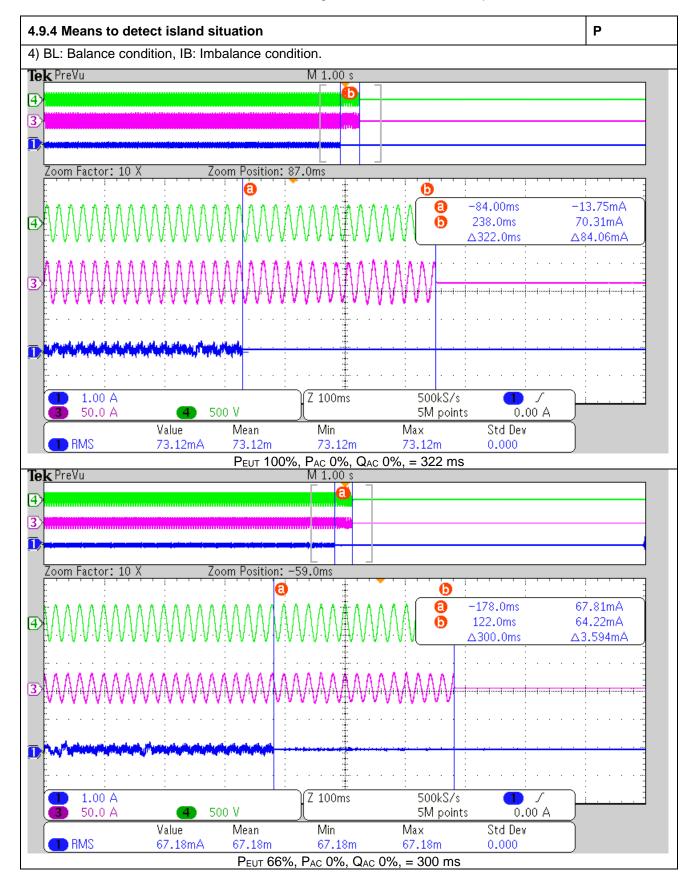
Table 4.9.3 Interfa	ce protection				Р	
Overvoltage 10 min mean protection Adjustment range Yes						
Trip value	Config. from 1.0	o 1.15Un (0.01 U	n steps)	Yes		
Trip time Conf	p time Config ≤ 3s not adjustable Time delay setting = 0 ms Yes					
Parameter	Settings	Test 1	Test 2	Test 3	Limits	
Trip value L1 [V]	253	253.03	253.06	253.04	253±1%	
Trip time [s]	< 603s	403.2	401.4	402.2	≤ 603s	
L2 [V]						
Trip time [s]						
L3 [V]						
Trip time [s]						
L1L2L3[V]						
Trip time [s]						
		Grap	h_L1			
	120%			120%		
	100%			115%		
				113/0		
	80%				`	
8				110%		
/er	60%			e e e e e e e e e e e e e e e e e e e		
Power (%)			1	110% %		
	40%		//			
	0.004			100%		
	20%					
	00/			0.507		
	0% 0 20	00 400	600 800	95%		
	0 20			1000		
		Time	e [s]			
	—— F	ower — Volt	age — — – Average	e voltage		

Table 4.9.3 Inte	rface protection				Р			
Underfrequ	uency threshold sta	ge 1 [81 <] Adju	stment range	Yes	No			
Trip v	ralue Config. from 47	0 to 50.0Hz (0.1H	Hz steps)	Yes				
Tr	ip time Config. from (Yes						
it may be require an external sign	ed to have the ability al.	to activate and de	eactivate a stage by		No			
This protection t		ps in the range from 0.2Un to 1.20Un.it is inhibited for						
Parameter	Settings	Test 1	Test 2	Test 3	Limits			
Trip value [Hz]	47.0	46.99	46.99	46.98	47.0±0.05			
Trip time [ms]	100	104.40	100.80	100.60	100±10			
Parameter	Settings	Test 1	Test 2	Test 3	Limits			
Trip value [Hz]	47.0	47.00	47.00	46.99	47.0±0.05			
Trip time [s]	100	100.00	99.98	100.00	100±10			
		Trip time (0.1s setting)					
	Tek PreVu	M 400	ms					
		HANKAN KANTAN KANTAN KANTAN KANTAN KANTAN KANTAN BANTAN BANTAN BANTAN BANTAN BANTAN BANTAN BANTAN BANTAN BANTAN		***************************************				
	3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	YADI KADI KADI KADI KADI KADI KADI KADI K	M					
	D.							
	Zoom Factor: 10 X	Zoom Position: -2.40ms						
		(3)	1 0					
	$\blacksquare \land \land \land \land \land \land \land$	Λ.Ψ. Μ.Ψ. Ψ.	-82.40m 6 22.00ms					
		-V VV V - V	Δ104.4m					
			<u> </u>					
		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	<u>‡</u> ∧ .	<u> </u>				
	3 \ / \ / \ / \ /	<i>\ </i>	<i>‡</i> \					
		V V V V	∄·∀ ::::::::::::::::::::::::::::::::::::					
			‡	<u> </u>				
			‡					
	20.0 V	; \(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	± : : : : : : : : : : : : : : : : : : :					
	3 50.0 A 4	500 V	5M points	0.00 V				
	Value 4 Frequency 46.991	Mean Min 1z 46.99 46.9	Max Std D 9 46,99 0.000					
	Trequency 40.55		100s setting)	,				
	Tek Stop	THE WITH (i soo ookii igj					
		(1)	6					
	4		Δ100.0					
	-		‡ ; ;	-				
			 	 				
	3		- -	: : :				
			<u> </u>					
		<u> </u>						
	20.0 V 3 50.0 A	20.0 s		0.00 V				
	Value	Mean Min	Max Std D					
	47.00 l							

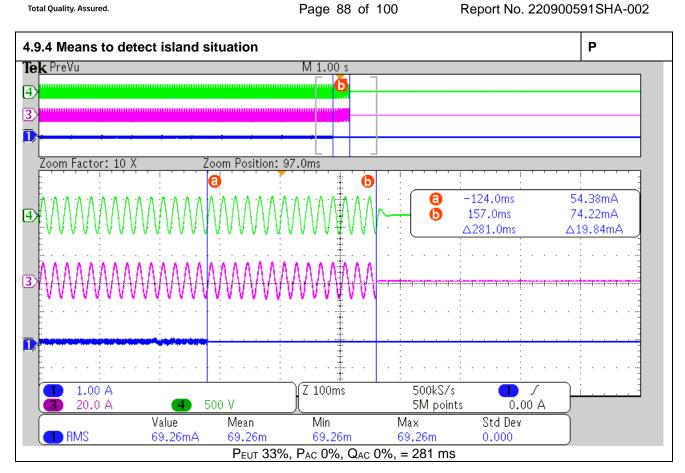
Table 4.9.3 Inte	erface protection				Р		
Underfrequ	Underfrequency threshold stage 2 [81 < <] Adjustment range Yes						
Trip v	alue Config. from 47	.0 to 50.0Hz (0.1H	Hz steps)	Yes			
	rip time Config. from	•	· · ·	Yes			
	ed to have the ability	•	• /		No		
This protection t		ps in the range from 0.2Un to 1.20Un.it is inhibited for					
Parameter	Settings	Test 1	Test 2	Test 3	Limits		
Trip value [Hz]	47.0	46.98	46.97	46.98	47.0±0.05		
Trip time [ms]	100	106.80	101.70	100.40	100±10		
Parameter	Settings	Test 1	Test 2	Test 3	Limits		
Trip value [Hz]	47.0	46.99	47.00	46.99	47.0±0.05		
Trip time [s]	5	5.02	5.00	5.00	5±0.05		
1 - 1-1			0.1s setting)	<u>, </u>			
	Tek PreVu	M 400	ms				
	3>18948484848484848484848	AKAAKAAKAAKAAKAAKAAKAAKAAKAAKAAKAA					
	- KIDALIDALIDALIDALIDALIDALIDALIDALIDALIDAL	KETOKETOKETOKETOKETOKETOKETOKETOKETOKETO					
	Zoom Factor: 10 X	Zoom Position: -69.2ms					
		a	± (b)				
		^: /k : /	-151.6r				
	4						
			t				
	344444	\mathbb{R}^{-1}	/ ///////////////////////////////////				
		· V V · V V · V	‡ V -				
			<u> </u>				
			<u>‡</u>]				
	20.0 V	√Z 40.0	1.25MS/s	D /			
		500 V	oms 1.25M57s 5M points	0.00 V			
	Value	Mean Min	Max Std				
	46.98			UU J			
	Te<u>k</u> P reVu	I rip time M 2.0	(5s setting)				
	4	a	6				
	3						
	3)						
	Zoom Factor: 2 X	Zoom Position: -220ms					
	Zoom ractor. Z X	a - 2201115	+ 1 6				
			a -2.815				
	⊕	k terrera da tajalahalah terrera da dalah lata	b 2.205 Δ5.020				
			<u> </u>	20.44			
			‡				
		<u>pphylogialidishahajadaklidi</u> k	<u> </u>				
	3	n latomatik k k k k k k k k k k k k k k k k k k					
		(b)		i i i			
		: :	‡ : :				
		-	‡				
	20.0 V	Z 1.00		000			
		500 V (Z 1.00 Mean Min	250kS/s 5M points	0.00 V			

Trip value Config. from Trip time Config. to the time the time to have the by an external signal.					P			
Trip time Config. 1 It may be required to have the by an external signal. This protection trips in the ranginput voltages of less than 20 9 Parameter Settin Trip value [Hz] 52.0 Trip time [ms] 100 Parameter Settin Trip value [Hz] 52.0 Trip time [s] 100 Tek PreVu Trip time [s] 100 Tek Prevu Trip time [s] 100 Tek Stop Tek Stop	m 50.0 to	Overfrequency threshold stage 1 [81 >] Adjustment range Yes						
t may be required to have the by an external signal. This protection trips in the range input voltages of less than 20 9 Parameter Settin Trip value [Hz] 52.0 Trip time [ms] 100 Parameter Settin Trip value [Hz] 52.0 Trip time [s] 100 Tek Prevu Tomp Factor: 10 X Tek Stop Tek Stop Tek Stop		52.0Hz (0.1H	z steps)	Yes				
oy an external signal. This protection trips in the range input voltages of less than 20 or setting frip value [Hz] Parameter Setting frip time [ms] Parameter Setting frip value [Hz] Frip value [Hz] Frip value [Hz] Setting frip value [Hz] Tek Prevu Tek Prevu Tek Stop Tek St	Trip time Config. from 0.1 to 100s (0.1s steps)							
This protection trips in the range input voltages of less than 20 grammater Frip value [Hz] Frip time [ms] Parameter Frip value [Hz] Frip value [Hz] Frip value [Hz] Frip time [s] Tek Prevu Tek Stop Tek Stop Tek Stop	may be required to have the ability to activate and deactivate a stage y an external signal.							
Parameter Settin Frip value [Hz] 52.0 Frip time [ms] 100 Parameter Settin Frip value [Hz] 52.0 Frip time [s] 100 Tek PreVu Town Factor: 10 X Tek Stop Tek Stop Tek Stop	in the range from 0.2Un to 1.20Un.it is inhibited for							
Frip value [Hz] 52.0 Frip time [ms] 100 Parameter Settin Frip value [Hz] 52.0 Frip time [s] 100 Tek PreVu Tek PreVu Tek Prevu Tek Prevu Tek Prevu Tek Stop Tek Stop		Test 1	Test 2	Test 3	Limits			
Trip time [ms] 100 Parameter Settin Trip value [Hz] 52.0 Trip time [s] 100 Tek PreVu Tom Factor: 10 X Tek Stop Tek Stop Tek Stop		52.00	52.00	52.00	52.0±0.05			
Parameter Settin Trip value [Hz] 52.0 Trip time [s] 1000 Tek PreVu 3 Zoom Factor: 10 X 4 Frequency Tek Stop	,	105.60	100.20	100.60	100±10			
Trip value [Hz] 52.0 Trip time [s] 100 Tek PreVu 1 20.0 V 50.0 A Tek Stop Tek Stop	gs	Test 1	Test 2	Test 3	Limits			
Tek PreVu 1 2 2 2 3 3 4 Frequency Tek Stop 1 1 1 1 1 1 1 1 1 1 1 1 1		52.00	52.00	52.01	52.0±0.05			
Tek PreVu 3	,	100.00	100.00	100.00	100±10			
3 Zoom Factor: 10 X 3 20.0 V 3 50.0 A 4 Frequency		Trip time (0.	.1s setting)	<u>'</u>	•			
Zoom Factor: 10 X 20.0 V		M 400ms	3					
3 3 10 20.0 V 3 50.0 A 4 Frequency	HOROHOMON	ANKARAKARAKARAKARAKARAKARAKARAKARAKARAKA	MANAMANANANANANANANANANANANANANANANANAN	NAMAMAMAMAMAMAMAMAMAMA				
Zoom Factor: 10 X 3 10 20.0 V 3 50.0 A 4 Frequency	SAAAAAAAAAAAAAAAAAAAAAAAAAAA	ARIMANIANI MANAMANANANANANANANANANANANANANANANANAN						
3 20.0 V 3 50.0 A 4 Frequency	ADACHACIACIACIACIACIACIACI	TACHACHACHACHACHACHA THACHAATH						
3 50.0 V 3 50.0 A	Zoo	m Position: 30.0ms						
3 50.0 V 3 50.0 A	0		0					
Tek Stop	$\bigvee \bigwedge$	/ / / / /	(a) −59.20 (b) 46.40 △105.	ms 828.1mV				
Tek Stop								
Tek Stop	VVV	$W \cap W \cap W$						
Tek Stop								
Tek Stop		∑ 40.0ms	s 1.25MS/s	• /				
Tek Stop	4 500 Value	V	5M points Max Sto	0.00 V				
4	52.00 Hz	52.00 52.00	52.00 0.0	000				
4		Trip time (10	JUs setting)					
	a	<u>_</u>	6					
			: a -48.5 b 51.45	5 s 21.76 V				
3			Δ100.	.0 s △20.51 V				
3								
3								
- · · · · · · · · · · · · · · · · · · ·								
T .	1 1 :							
20.0 V 3 50.0 A								
33.311	4 500	20.0 s	25.0kS/s 5M points	0.00 V				

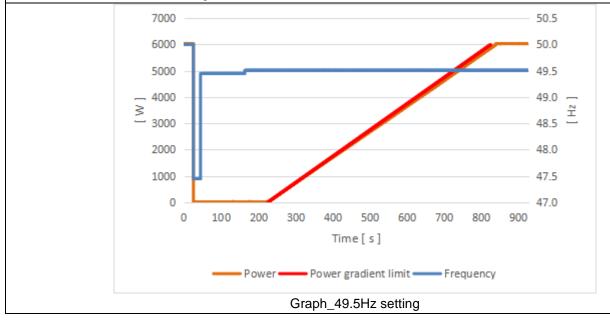
Table 4.9.3 Inter	Р						
Overfrequer	ncy threshold stage	e 2 [81 > >] Adjus	tment range	Yes	No		
Trip valu	ue Config. from 50.	0 to 52.0Hz (0.1H	z steps)	Yes			
Trip	Trip time Config. from 0.1 to 5s (0.05s steps)						
	it may be required to have the ability to activate and deactivate a stage by an external signal.						
	ps in the range fro less than 20 % Un		n.it is inhibited for		No		
Parameter	Settings	Test 1	Test 2	Test 3	Limits		
Trip value [Hz]	52.0	52.00	52.00	52.01	52.0±0.05		
Trip time [ms]	100	104.80	100.40	100.10	100±10		
Parameter	Settings	Test 1	Test 2	Test 3	Limits		
Trip value [Hz]	52.0	52.00	52.00	52.00	52.0±0.05		
Trip time [s]	5	5.02	5.00	4.99	5±0.05		
THP IIIIG [3]	<u> </u>			7.33	0±0.00		
T	ek PreVu	M 400r	0.1s setting)				
4		 VALOKADIADIADIADIADIADIADIADIADIADIADIADIADIA					
3	AND HOD HOD HOD HOD HOD HOD HOD HOD HOD HO	IAKKUAKKIAKKIAKKIAKKIAKKIAKKIAKKIAKKIAKK	KUANAU				
	- Hamahanahananahanadaanada	YEDYEDYEDYEDYEDYEDYEDYEDYEDYEDYEDYE	VITVOY)				
	Zoom Factor: 10 X	Zoom Position: 144ms					
	E E E	(a):	6				
		$\Lambda \wedge \Lambda \wedge \Lambda \wedge \Lambda$	51.60				
4	¥.\ <i>/</i> .\ <i>/</i> .\/.\	/: \/	1 56.4 △ ∆104.				
3	$A \cap A \cap A \cap A$	$A \cup A \cup$	A				
	14 · V · V · V · V · V	/- V - V - V - V - V					
		<u> </u>					
,1	20.0 V 3 50.0 A	500 V Z 40.0r	ns 1.25MS/s 5M points	0.00 V			
	Value 4 Frequency 52.00	Mean Min	Max St	d Dev 000			
	Trequency 52.00		(5s setting)	···			
T	ek PreVu	M 2.00	s				
4		a	6				
3							
	Zoom Factor: 2 X	Zoom Position: 160ms	-				
) : ' : ' : ' :	<u> </u>				
		بتمراء مصانحات بتطاعاتها والمطبق الطامة	1. -2.50 (a) -2.50 (b) 2.51				
4		i. Taran da ing katang	<u>υ</u> 2.51 Δ5.03				
3		<u> </u>					
Į.	20.0 V	∑ 1.00		1 / 1			
	3 50.0 A 4 Value		5M points Max St	0.00 V			
	4 Frequency 52.00			000			



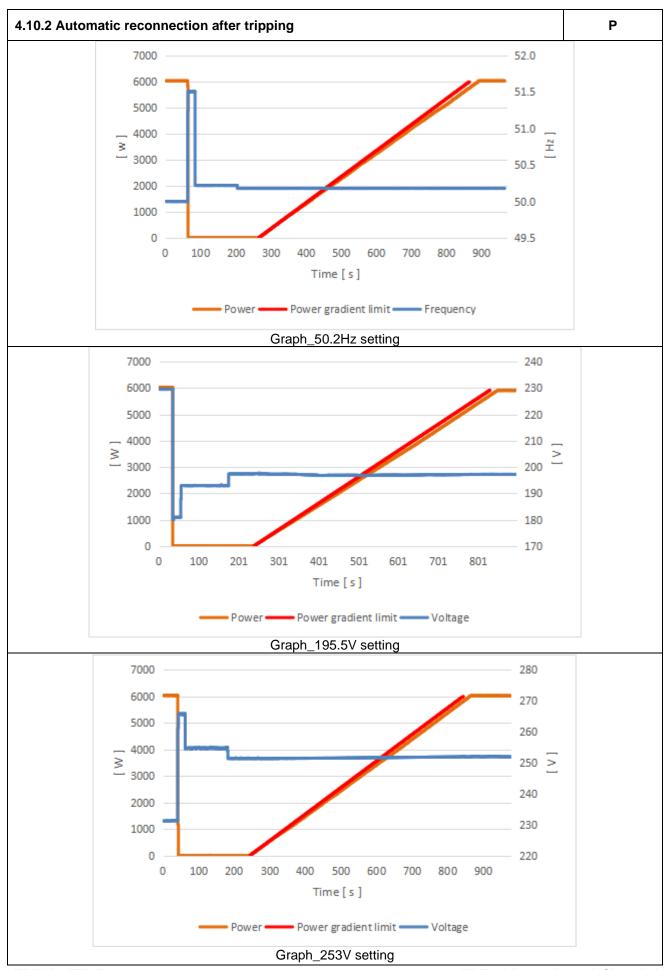
4.9.4	Means to d	letect island situ	ation						Р
No.	PEUT ¹⁾ (% of EUT rating)	Reactive load (% of QL in 6.1.d)1)	PAC ²⁾ (% of nominal)	QAC ³⁾ (% of nominal)	Run on time (ms)	P _{EUT} (W)	Actual Qf	V _{DC}	Remarks 4)
1.	100	100	0	0	322	6000	0.99	355	Test A at BL
2.	66	66	0	0	300	3960	1.00	270	Test B at BL
3.	33	33	0	0	281	1980	0.98	168	Test C at BL
4.	100	100	-5	-5	304	6000	1.01	355	Test A at IB
5.	100	100	-5	0	289	6000	1.04	355	Test A at IB
6.	100	100	-5	5	212	6000	1.07	355	Test A at IB
7.	100	100	0	-5	277	6000	0.96	355	Test A at IB
8.	100	100	0	5	237	6000	1.01	355	Test A at IB
9.	100	100	5	-5	210	6000	0.92	355	Test A at IB
10.	100	100	5	0	280	6000	0.94	355	Test A at IB
11.	100	100	5	5	282	6000	0.96	355	Test A at IB
12.	66	66	0	-5	222	3960	0.97	270	Test B at IB
13.	66	66	0	-4	228	3960	0.98	270	Test B at IB
14.	66	66	0	-3	230	3960	0.98	270	Test B at IB
15.	66	66	0	-2	280	3960	0.99	270	Test B at IB
16.	66	66	0	-1	236	3960	0.99	270	Test B at IB
17.	66	66	0	1	238	3960	1.00	270	Test B at IB
18.	66	66	0	2	256	3960	1.01	270	Test B at IB
19.	66	66	0	3	254	3960	1.01	270	Test B at IB
20.	66	66	0	4	242	3960	1.02	270	Test B at IB
21.	66	66	0	5	168	3960	1.02	270	Test B at IB
22.	33	33	0	-5	203	1980	0.96	168	Test C at IB
23.	33	33	0	-4	218	1980	0.96	168	Test C at IB
24.	33	33	0	-3	220	1980	0.97	168	Test C at IB
25.	33	33	0	-2	242	1980	0.97	168	Test C at IB
26.	33	33	0	-1	230	1980	0.98	168	Test C at IB
27.	33	33	0	1	263	1980	0.99	168	Test C at IB
28.	33	33	0	2	245	1980	0.99	168	Test C at IB
29.	33	33	0	3	256	1980	1.00	168	Test C at IB
30.	33	33	0	4	200	1980	1.00	168	Test C at IB
31.	33	33	0	5	160	1980	1.01	168	Test C at IB
Rem	ark		•			•	•	•	


Remark:

- 1) PEUT: EUT output power
- 2) PAC: Real power flow at S1 in Figure 1. Positive means power from EUT to utility. Nominal is the 0 % test condition value.
- 3) QAC: Reactive power flow at S1 in Figure 1. Positive means power from EUT to utility. Nominal is the 0 % test condition value.

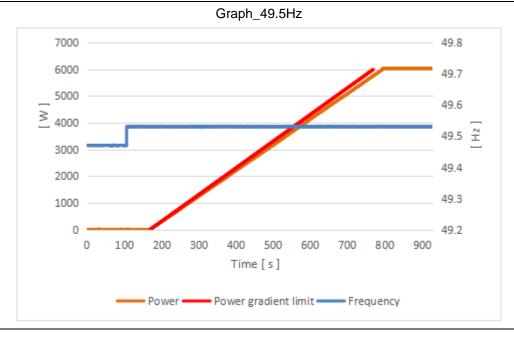


4.10.2 Automatic reconnection after	Р		
Parameter	Range	Default setting	
Lower frequency	47,0Hz – 50,0Hz	49,5Hz	
Upper frequency	50,0Hz - 52,0Hz	50,2Hz	
Lower voltage	50% – 100%Un	85 % Un	
Upper voltage	100% – 120% Un	110 % U _n	
Observation time	10s – 600s	60s	
Active power increase gradient	6% – 3000%/min	10%/min	

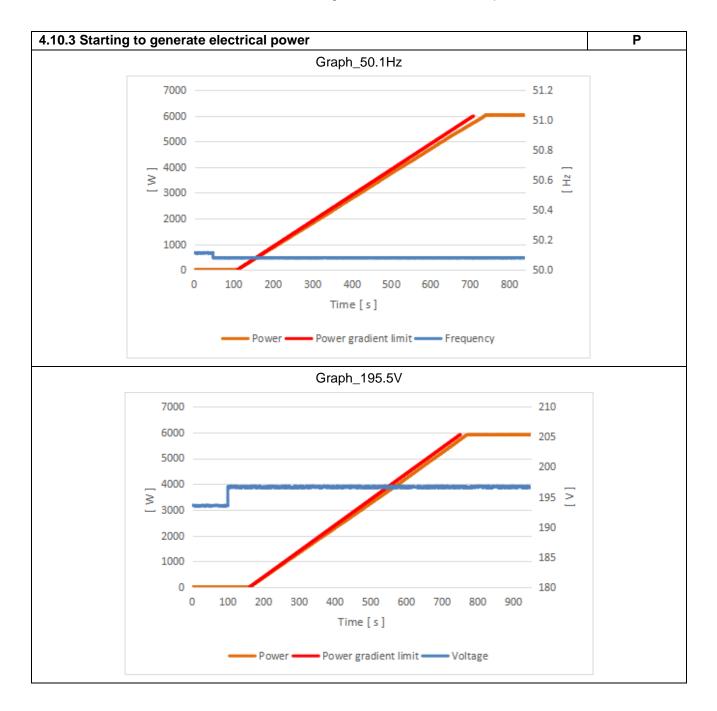

Page 89 of 100

Test sequence after trip	connection	connection allowed	Observation time (s)	Power gradient after Connection (%/min)
Step a)	<49.5Hz	No		
Step b)	≥49.5Hz	Yes	61.0	9.70
Step c)	>50.2Hz	No		
Step d)	≤50.2Hz	Yes	61.0	9.63
Step e)	<195.5V	No		
Step f)	≥195.5V	Yes	61.0	9.78
Step g)	>253V	No		
Step h)	≤253V	Yes	61.0	9.72

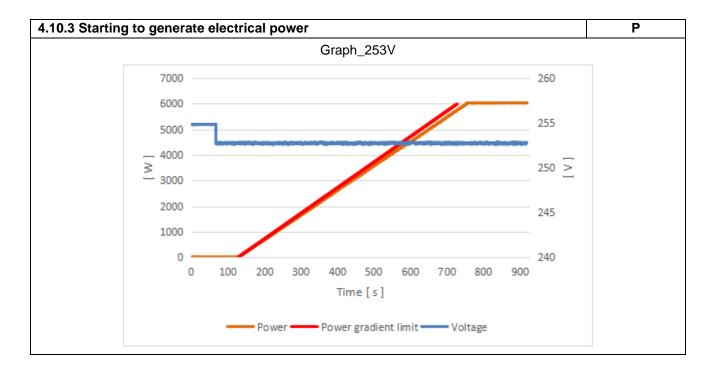
Remark: Tested at default setting.



4.10.3 Star	10.3 Starting to generate electrical power					
	Parameter	Range	Default setting			
	Lower frequency	47,0Hz – 50,0Hz	49,5Hz			
	Upper frequency	50,0Hz - 52,0Hz	50,1Hz			
	Lower voltage	50% – 100% U _n	85 % U _n			
	Upper voltage	100% – 120% U _n	110 % U _n			
	Observation time	10s - 600s	60s			
	Active power increase gradient	6% – 3000%/min	disabled			


Test result:

Test sequence at normal operation starting	connection	connection allowed	Observation time (s)	Power gradient after Connection (%/min)
Step a)	<49.5Hz	No		
Step b)	≥49.5Hz	Yes	61.0	9.57
Step c)	>50.1Hz	No		
Step d)	≤50.1Hz	Yes	61.0	9.54
Step e)	<195.5V	No		
Step f)	≥195.5V	Yes	61.0	9.78
Step g)	>253V	No		
Step h)	≤253V	Yes	61.0	9.62


Remark: Tested at default setting.

	ctive power reduction by se			
String	1 U _{DC} =	360 Vdc Uac = Un	230 Vac P _{Ema}	x (KW) 6
	1 min mean value P/Pn	Pmeasured (%)	△Pmeasured (%)	Limit
	Psetpoint (%)			[%]
	100%	100.10%	0.10%	±5%
	90%	90.24%	0.24%	±5%
	80%	80.23%	0.23%	±5%
	70%	70.27%	0.27%	±5%
	60%	60.14%	0.14%	±5%
	50%	50.15%	0.15%	±5%
	40%	40.32%	0.32%	±5%
	30%	30.27%	0.27%	±5%
	20%	20.39%	0.39%	±5%
	10%	10.42%	0.42%	±5%
	0%	0.29%	0.29%	±5%
	wer gradient for increasing a			0.42%P _n /s
Time fo	or Logic interface (at input po	ort) activated		0.411s
	(n. d.) 19 60.00% — — — — — — — — — — — — — — — — — —	Time [s]	00 1000 1200	-
	Tek PreVu	M 2.00 s	Lime low	
	4	(a)		
	3			-
	Zoom Factor: 20 X	Zoom Position: 1.23 s		
			1.0132 s 5.366 V 1.4244 s 5.463 V	
			N N N	
	3	V V V V V V V V V V V V V V V V V V V	VV	
	20.0 V		in i	

4.13	TABLE	: Single fault	tolerance		P
No	Fault	Componen t No.	Fault point	Duratio n	Result
1.	ISO Relay	ALFG1	Short circuit before start up inverter	3min	Unit can't operate, EM: Iso Fault. no danger, no hazard, no fire
2.	Monitoring Relay - L	K1	Pin3 to Pin4 short circuit before start up inverter	3min	Unit can't operate, EM: GridRelay Fault. no danger, no hazard, no fire
3.	Monitoring Relay - L	K1	Pin3 to Pin4 open circuit before start up inverter	3min	Unit can't operate, EM: GridRelay Fault. no danger, no hazard, no fire
4.	Monitoring Relay - N	К3	Pin3 to Pin4 short circuit before start up inverter	3min	Unit can't operate, EM: GridRelay Fault. no danger, no hazard, no fire
5.	Monitoring Relay - N	КЗ	Pin3 to Pin4 open circuit before start up inverter	3min	Unit can't operate, EM: GridRelay Fault. no danger, no hazard, no fire
6.	AC voltage measure1	D4	Pin2-Pin3 Short circuit	3min	Unit shut down, EM: GridOverVolt Fault. no danger, no hazard, no fire
7.	AC voltage measure1	D4	Pin1-Pin3 Short circuit	3min	Unit shut down, EM: GridOverVolt Fault. no danger, no hazard, no fire
8.	AC voltage measure2	D10	Pin1-Pin3 Short circuit	3min	Unit can't operate, EM: PSInvHighVoltFault. No damage, no hazard, no fire
9.	AC voltage measure2	D10	Pin2-Pin3 Short circuit	3min	Unit can't operate, EM: PSInvHighVoltFault. No damage, no hazard, no fire
10.	AC current measure1	D19	Pin1-Pin3 Short circuit	3min	Unit can't operate, EM: RInvCurAdChaFault. No damage, no hazard, no fire.
11.	AC current measure1	D19	Pin2-Pin3 Short circuit	3min	Unit can't operate, EM: RInvCurAdChaFault. No damage, no hazard, no fire.
12.	AC current measure2	D20	Pin1-Pin3 Short circuit	3min	Unit can't operate, EM: SInvCurAdChaFault. No damage, no hazard, no fire.
13.	AC current measure2	D20	Pin2-Pin3 Short circuit	3min	Unit can't operate, EM: SInvCurAdChaFault. No damage, no hazard, no fire.
14.	AC current measure3	D22	Pin2-Pin3 Short circuit	3min	Unit can't operate, EM: RUPSInstCurrHighFault. No damage, no hazard, no fire.
15.	AC frequency measure	R255	Pin1-Pin2 Short circuit	3min	Unit shut down, EM: GridOverFreq Fault. No damage, no hazard, no fire
16.	V-bus measure	D31	Pin2-Pin3 Short circuit	3min	Unit can't operate, EM: BusAllVoltHwOveFault. No damage, no hazard, no fire.
17.	T measure	R180	Pin1-Pin2 Short circuit	3min	Unit can't operate, EM: TemperatureAdChanFault. No damage, no hazard, no fire.
18.	power tube IGBT	QA5	Pin2-Pin3 Short circuit before start up	3min	Unit can't operate, EM: InvOpenTestErr. No danger, no hazard, no fire
19.	power tube IGBT	QA6	Pin2-Pin3 Short circuit before start up	3min	Unit shut down, EM: InvOpenTestErr. No damage, no hazard, no fire
20.	GFCI check		Short circuit	3min	Unit shut down, EM: LeakCurrFault. No damage, no hazard, no fire

4.13	TABLE	: Single faul	tolerance		P		
21.	Bus cap	C208	Pin1-Pin2 Short circuit before start up	3min	Unit can not start up, No damage, no hazard, no fire.		
4.4.4	4.4 Transforme	r short circuit	tests				
22.	Transformer short circuit tests	T4	Pin22-Pin24 Short circuit	10min	Unit can not start up, No damage, no hazard, no fire.		
23.	Transformer short circuit tests	T4	Pin32-Pin36 Short circuit	10min	Unit can not start up, No damage, no hazard, no fire.		
24.	power tube MOS-SPS	Q-MOS1	G-D Short circuit	10min	SPS no output, no danger, no hazard, no fire		
25.	power tube MOS-SPS	Q-MOS1	D-S Short circuit	10min	SPS no output, no danger, no hazard, no fire		
4.4.4	4.5 Output short	circuit					
26.	Output L to N		short circuit	3min	Unit shut down, EM: GridUnderVoltFault. No damage, no hazard, no fire		
27.	Output L to PE	1	short circuit	3min	Unit shut down, EM: GridLossFault. No damage, no hazard, no fire		
4.4.4	4.6 Backfeed cu	rrent test for	equipment with more tha	n one sou	irce of supply		
28.	AC			10min	Vdc=0, V _{BAT} =0		
29.	BAT			10min	Vdc=0, Vac=0		
30.	BAT			10min	Vdc=0, Vac=0		
4.4.4	4.7 Output overl	oad					
31.	Overload		Output overload (110%)	30 min	Unit normal operation, No damage, no hazard, no fire		
4.4.4	4.4.4.8 cooling system failure test						
32.	Cooling system failure – Blanketing test		Put the unit to box	2Hour	1 hour power run at 50%		
4.4.4	4.4.4.13 Mis-wiring with incorrect phase sequence or polarity						
33.	Output L - N		Reverse polarity before start up	3min	Unit normal operation. No damage, no hazard, no fire.		

Remarks:

Abbreviations

APS: auxiliary power supply, EM: error message,

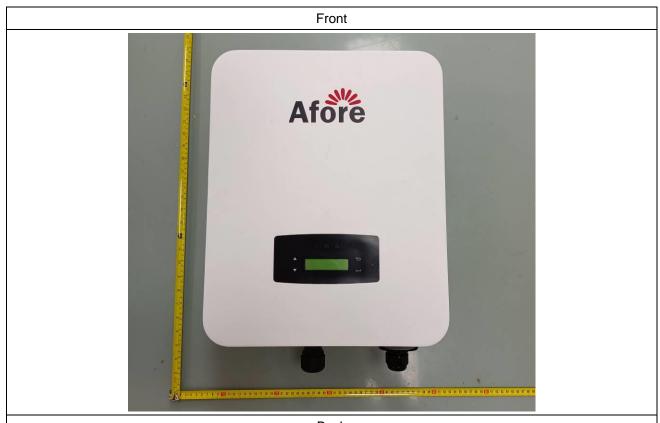
EUT: equipment under test, SC short circuit, OP: open circuit, O/L: Overloaded

EUT shut down: EUT not connect to Grid, cease to export power to Grid, the relay is opened.

EUT standby: EUT connect to Grid, cease to export power to Grid, the relay is closed.

During the test:

Fire can not propagate beyond the EUT.


Equipment shall not emitt molten metal.

Enclosures shall not deform to cause non-compliance with the standard.

Dielectric test is made on RI and BI between Pri. circuit and protective earthing terminal after the test.

No Backfeed voltage on the test

